3,854 research outputs found

    New measurements of magnetic fields of roAp stars with FORS1 at the VLT

    Full text link
    Magnetic fields play a key role in the pulsations of rapidly oscillating Ap (roAp) stars since they are a necessary ingredient of all pulsation excitation mechanisms proposed so far. This implies that the proper understanding of the seismological behaviour of the roAp stars requires knowledge of their magnetic fields. However, the magnetic fields of the roAp stars are not well studied. Here we present new results of measurements of the mean longitudinal field of 14 roAp stars obtained from low resolution spectropolarimetry with FORS1 at the VLT.Comment: 5 pages, accepted for publication in A&

    The galaxy's 157 micron (C 2) emission: Observations by means of a spectroscopic lunar-occultation technique

    Get PDF
    Galactic (C II) 157 micron, fine-structure emission was estimated. At a Galactic longitude of 8 deg, the peak power observed in a 7' x 7' field is approx. 5 x 10 to the -9 Watt. The method used to detect this radiation involved chopping against the cold side of the Moon

    Highly ejected J = 16 to 15 rotational transitions of CO at 162.8 mirons in the Orion cloud

    Get PDF
    The first observations of the J = 16 to J = 15, 162.8 microns transition of CO from an astronomical source are reported. Measurements were carried out on the Kleinmann-Low Nebula. The intensity observed is in good agreement with predictions from previous spectroscopic work carried out in the far infrared. The observation strengthens the previous claim that approximately 1.5 solar mass of molecular hydrogen is heated to a temperature above 750 K within the shocked region in the Nebula. Upper limits to he OH intensity in the F2 (2Pi 1/2) transitions J = 3/2 to J = 1/2 which fall into two groups centered respectively at 163.12 and 163.40 are presented

    Observations of the 145.5 micron (OI) emission line in the Orion nebula

    Get PDF
    A first set of observations of the (OI) 3P to 3P1 (145.5 micron) transition was obtained. The line was observed both in a beam centered on the Trapezium, and in a 7 times wider beam encompassing most of the Orion Nebula. A wide beam map of the region was constructed which shows that most of the emission is confined to the central regions of the nebula. These observations may be compared with reported measurement of the 3P1 to 3P2 (63.2 micron) transition in Orion and are consistent with optically thin emission in the 145.5 micron line and self-adsorbed 63.2 micron emission lines. Mechanisms are discussed for the excitation of neutral oxygen. It is included that much of the observed emission originates in the thin, radio-recombination-line-emitting CII/HI envelope bordering on the HII region

    Submillimeter observations of OH and CH in M42

    Get PDF
    The (sup 2) pi sub 1/2 (J = 3/2 to 1/2) transitions of OH at 163.12 and 163.40 micro m have been detected and upper limits have been obtained for the (sup 2) pi sub 3/2 (J = 3/2 to 1/2) transitions of CH at 149.09 and 149.39 micro m, in observations of the Kleinmann-Low Nebula of Orion. All four flux levels lie between 1 and 1.2 x 10 to the 17th power/sq.cm. The OH lines are bright when compared to the lower, (sup 2) pi sub 3/2 (J = 5/2 to 3/2) fluxes reported and imply that the 119 micro m emission observed is partially self-absorbed. The combined results provide strong constraints. Taken together with existing data on molecular hydrogen and CO and recent data on other OH transition, they suggest OH emission from post-shock regions at temperatures T approx 1000 k, densities approx. 7 x 10 to the 6th powr/cu cm N sub OH approx 80/cu cm optically thick for the (sup 2) pi sub 3/2 (J = 5/2 to 3/2), 119 micro m but only partially self-absorbing in the (J = 7/2 to 3/2), 84 micro m transitions over a Doppler velocity bandwidth of 30 km/sec. The OH column density is N sub OH approx 4 x 10 to the 16th powr/sq cm. in the emitting regions which occupy a fraction of approx 0.1 of a 1' x 1' field of view centered on the Becklin-Neugebauer source. The CO (J = 31 to 30), 84 micro m transition appears to lie sufficiently close to one of the 84 micro m OH line components to be partially absorbed as well, through a Bowen-type mechanism

    Finite time distributions of stochastically modeled chemical systems with absolute concentration robustness

    Get PDF
    Recent research in both the experimental and mathematical communities has focused on biochemical interaction systems that satisfy an "absolute concentration robustness" (ACR) property. The ACR property was first discovered experimentally when, in a number of different systems, the concentrations of key system components at equilibrium were observed to be robust to the total concentration levels of the system. Follow-up mathematical work focused on deterministic models of biochemical systems and demonstrated how chemical reaction network theory can be utilized to explain this robustness. Later mathematical work focused on the behavior of this same class of reaction networks, though under the assumption that the dynamics were stochastic. Under the stochastic assumption, it was proven that the system will undergo an extinction event with a probability of one so long as the system is conservative, showing starkly different long-time behavior than in the deterministic setting. Here we consider a general class of stochastic models that intersects with the class of ACR systems studied previously. We consider a specific system scaling over compact time intervals and prove that in a limit of this scaling the distribution of the abundances of the ACR species converges to a certain product-form Poisson distribution whose mean is the ACR value of the deterministic model. This result is in agreement with recent conjectures pertaining to the behavior of ACR networks endowed with stochastic kinetics, and helps to resolve the conflicting theoretical results pertaining to deterministic and stochastic models in this setting

    Pulsation in the atmosphere of the roAp star HD 24712. I. Spectroscopic observations and radial velocity measurements

    Get PDF
    We have investigated the structure of the pulsating atmosphere of one of the best studied rapidly oscillating Ap stars, HD 24712. For this purpose we analyzed spectra collected during 2001-2004. An extensive data set was obtained in 2004 simultaneously with the photometry of the Canadian MOST mini-satellite. This allows us to connect directly atmospheric dynamics observed as radial velocity variations with light variations seen in photometry. We directly derived for the first time and for different chemical elements, respectively ions, phase shifts between photometric and radial velocity pulsation maxima indicating, as we suggest, different line formation depths in the atmosphere. This allowed us to estimate for the first time the propagation velocity of a pulsation wave in the outer stellar atmosphere of a roAp star to be slightly lower than the sound speed. We confirm large pulsation amplitudes (150-400 m/s) for REE lines and the Halpha core, while spectral lines of the other elements (Mg, Si, Ca, and Fe-peak elements) have nearly constant velocities. We did not find different pulsation amplitudes and phases for the lines of rare-earth elements before and after the Balmer jump, which supports the hypothesis of REE concentration in the upper atmosphere above the hydrogen line-forming layers. We also discuss radial velocity amplitudes and phases measured for individual spectral lines as tools for a 3D tomography of the atmosphere of HD 24712.Comment: accepted by A&

    First exit times of solutions of stochastic differential equations driven by multiplicative Levy noise with heavy tails

    Full text link
    In this paper we study first exit times from a bounded domain of a gradient dynamical system Y˙t=−∇U(Yt)\dot Y_t=-\nabla U(Y_t) perturbed by a small multiplicative L\'evy noise with heavy tails. A special attention is paid to the way the multiplicative noise is introduced. In particular we determine the asymptotics of the first exit time of solutions of It\^o, Stratonovich and Marcus canonical SDEs.Comment: 19 pages, 2 figure

    Non-explosivity of Stochastically Modeled Reaction Networks that are Complex Balanced

    Get PDF
    We consider stochastically modeled reaction networks and prove that if a constant solution to the Kolmogorov forward equation decays fast enough relatively to the transition rates, then the model is non-explosive. In particular, complex-balanced reaction networks are non-explosive
    • …
    corecore