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Non-explosivity of stochastically modeled reaction
networks that are complex balanced∗

David F. Anderson†§ Daniele Cappelletti†¶ Masanori Koyama‡

Thomas G. Kurtz†

December 12, 2020

Abstract

We consider stochastically modeled reaction networks and prove that if a constant
solution to the Kolmogorov forward equation decays fast enough relatively to the tran-
sition rates, then the model is non-explosive. In particular, complex balanced reaction
networks are non-explosive.

1 Introduction

Stochastic reaction networks are mathematical models that describe the time evolution of
the counts of interacting objects. Despite their general formulation, these models are pri-
marily associated with biochemistry and cell biology, where they are utilized to describe
the dynamics of systems of interacting proteins, metabolites, etc. [9, 17, 19, 25]. Other ap-
plications include ecology [23], epidemiology [5], and sociology [26, 27, 31]. A more recent
development concerns the design of stochastic reaction networks that are able to perform
computations [10,11,28,29].

Stochastically modeled reaction networks are typically utilized in biochemistry when at
least some of the species in the model have low abundances, perhaps of order 102 or fewer.
In this situation, the randomness that arises from the interactions of the molecules cannot
be ignored, and the counts of the molecules of the different chemical species are modeled
according to a discrete space, continuous-time Markov chain. If more molecules are present,
perhaps between order 102 and 103, a diffusion model is often utilized, which describes the
system in terms of a stochastic differential equation [4]. When abundances are larger, a
deterministic model is often chosen, which describes the dynamics by means of a system of
ordinary differential equations [3, 4].
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When modeling biochemical systems, it may happen that the designed model exits every
compact set in a finite time. If the model utilized is a deterministic system of differential
equations, such behavior corresponds to the presence of a vertical asymptote. When this
happens in a stochastic model, either in a continuous-time Markov chain or in a system of
stochastic differential equations, the event takes the name of “explosion”. Since in nature
no quantity can reach infinity in a finite time, the presence of a vertical asymptote or of an
explosion implies that the model fails to accurately describe the system of interest, or at
least that an uncontrolled growth in the system causes it to exit the region where the model
is valid. A famous example of this situation is given by the chemotaxis models discussed
in [7, 8, 15].

In [2], constant solutions to the forward Kolmogorov equation were constructed for an
important class of continuous-time Markov chain models of chemical reaction networks,
specifically those that are complex balanced. The results presented in this paper are a
response to a question raised by Eduardo Sontag regarding whether or not the processes
in this class could have explosions. The answer, given in this paper, is no. Specifically,
we give sufficient conditions on the constant solutions of the forward Kolmogorov equation
of a stochastic reaction network that imply non-explosiveness. We then show that these
conditions are satisfied by the complex balanced systems studied in [2].

Continuous time Markov chain models, say with countable state space E ⊂ Zd, are usually
specified by giving transition intensities 0 ≤ q(x, y) < ∞. The intuitive interpretation of
these intensities is that the corresponding process (Xt)t≥0 should satisfy

P (Xt+h = y|FXt ) = q(Xt, y)h+ o(h), (1)

where FXs represents all information about the process (Xt)t≥0 up to time s (that is, {FXt }
is the filtration generated by (Xt)t≥0). One way of making this intuition precise is to derive
the corresponding forward/master equation for the one-dimensional distributions Pt(x) =
P (Xt = x), t ≥ 0, x ∈ E, that is,

d

dt
Pt(x) =

∑
y∈E\{x}

Pt(y)q(y, x)−
∑

y∈E\{x}

Pt(x)q(x, y), (2)

for a specified initial distribution P0, where the derivative at t = 0 is interpreted as a right
derivative.

We can give conditions for explosions in terms of what is called the minimal solution
of the system (2): the model is non-explosive if and only if the minimal solution of (2)
satisfies

∑
x∈E Pt(x) = 1 for all t ≥ 0, provided that P0(x) > 0 for all x ∈ E [4]. However,

those conditions are not helpful if what we are given is a constant solution of (2), that is, a
probability distribution π satisfying

0 =
∑

y∈E\{x}

π(y)q(y, x)−
∑

y∈E\{x}

π(x)q(x, y). (3)

It is worth noting at this point that there are stochastic reaction networks whose asso-
ciated stochastic process undergoes explosions almost surely, but neverthless a probability
distribution satisfying (3) exists. As an example, consider the stochastic mass-action model
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implied by the following reaction graph (see Section 2 for the correspondence between the
graph and the stochastic model),

A
1−−⇀↽−−
2

2A
7−−⇀↽−−
4

3A
6−−⇀↽−−
1

4A
1−−→ 5A. (4)

In Section 3, we show that the transition rates implied by the above graph admit a distribu-
tion satisfying (3), but a stochastic process satisfying these transition rates explodes almost
surely in finite time.

Given a probability distribution satisfying (3), rather than trying to address the explosion
question by analyzing the forward equation we introduce a stochastic equation which we
claim the corresponding process must satisfy. Let {Nxy : x, y ∈ E, x 6= y} be independent
Poisson processes where Nxy has intensity q(x, y). Then for each function in the collection

{f : E → R : #{x ∈ E : f(x) 6= 0} <∞},

we require

f(Xt) = f(X0) +
∑

x,y∈E,x 6=y

∫ t

0

(f(y)− f(Xs−))1{Xs−=x}dN
xy
s . (5)

Note that we use functions f with finite support in defining the equation rather than simply
taking f(x) = x to ensure that for each f , the right side of the equation has finitely many
jumps in a finite time interval. To be convinced that this equation captures the intuition of
transition intensities, note that if Xt = x, the probabilty that Xt+h = y is

P (Nxy
t+h −N

xy
t = 1) + o(h) = q(x, y)he−q(x,y)h + o(h) = q(x, y)h+ o(h).

In the Appendix, we make the above claim precise by arguing that for each solution
(Xt)t≥0 of the stochastic equation (5), the one dimensional distributions Pt(x) = P (Xt = x)
give a solution of (2), and for each solution (Pt)t≥0 of (2), there exists a solution (Xt)t≥0
of the stochastic equation such that Pt(x) = P (Xt = x). In particular, in the case of a
solution of (3), there exists a solution (Xt)t≥0 of (5) which is a stationary process with
P (Xt = x) = π(x) for all t ≥ 0 and x ∈ E.

If (Xt)t≥0 is a solution of (5), then the number of jumps by (Xt)t≥0 in the time interval
[0, t] is simply

JX(t) =
∑

x,y∈E,x 6=y

∫ t

0

1{Xs−=x}dN
xy
s .

It turns out (Theorem 2) that we can resolve the original question by simply checking that
for the stationary process

E[JX(t)] = E[

∫ t

0

∑
x,y∈E,x 6=y

1{Xs−=x}dN
xy
s ] = t

∑
x,y∈E,x 6=y

π(x)q(x, y) <∞.

That is, the expected number of jumps per unit time of the stationary processes is finite.
It is worth mentioning that deciding whether a stochastic mass-action system undergoes

an explosion is not a trivial task. We will demonstrate this via examples in Section 3. In
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particular, knowledge of the behavior of the associated deterministic model (which is well
known for complex balanced systems) is not enough to draw conclusions about the possibility
of an explosion for the stochastic model: we will show explosive stochastic models whose
deterministic counterpart has bounded solutions, and positive recurrent stochastic models
whose deterministic counterpart has solutions which blow-up.

2 Notation

We start by introducing some notation we will use throughout: Z≥0 will denote the non-
negative integers, | · | denotes the euclidean norm. Moreover, we will say that a vector
v is positive if all its entries are strictly positive. We will further use X ∼ π to mean
“the probability distribution of the random variable X is π”, and we define as support of
a probability measure π the set of states x such that π(x) > 0. Finally, we will denote by
limt↑T f(t) the limit of the function f(t) for t approaching T from the left.

For notational convenience, we will use the following shorthand notations: for any two
vectors v, w ∈ Rn

≥0 and any vector x ∈ Zn≥0 we denote

vw =
n∏
i=1

(vi)
wi and x! =

n∏
i=1

(xi)!,

with the convention 00 = 1.
A standard knowledge of continuous-time Markov chains is assumed. See for example [24]

for a more detailed introduction to the topic. In particular, terminology such as “positive
recurrence,” “transience,” “embedded discrete-time Markov chain,” etc., will be used without
being defined.

3 Stationary distributions and explosions

Let (Xt)t≥0 be a stochastic process on E ⊂ Zd satisfying (5). We make the following technical
assumptions on the intensities.

Condition 1. We require the following.

• For x, y ∈ E, x 6= y, 0 ≤ q(x, y) <∞.

• For each y ∈ E,
∑

x∈E\{y} q(y, x) <∞.

• For each x ∈ E, supy∈E\{x} q(y, x) <∞.

In the Appendix we will show that the one dimensional distributions of a process (Xt)t≥0
satisfying (5) and Condition 1 necessarily satisfy the forward Kolmogorov equation, that is
(2) holds.

The following definition is standard [24].
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Definition 1. Consider the continuous-time Markov chain (Xt)t≥0, and let τi be the time of
the ith jump of the process. We say that (Xt)t≥0 undergoes an explosion if

T∞ = lim
i→∞

τi <∞.

If P (T∞ <∞) > 0 given some initial distribution of X0 on E, then we say that the process
(Xt)t≥0 is explosive.

Note that if (Xt)t≥0 undergoes an explosion, then we necessarily have

lim sup
t↑T∞

|Xt| =∞.

To verify this last statement, suppose the last equation did not hold. Then due to Condition
1 we would have

θ = lim sup
t<T∞

q(Xt) <∞, (6)

where
q(x) =

∑
y∈E\{x}

q(x, y).

Equation (6) would then imply that the expectations between jump times (which are expo-
nentially distributed with state dependent rates given by q(·)) are uniformly bounded from
below by 1/θ. Hence, the possibility of an explosion would be precluded. See also [18, Propo-
sition 10.21].

We present a simple example that demonstrates the possibility of an explosion.

Example 1. Let E = {1, 2, . . .}, and define q(x, x + 1) = x2 and q(x, y) = 0 otherwise.
Starting with x = 1 and proceeding by induction, it is simple to check the the solution of
(2) is unique. It also follows that if P0(x) ≥ 0 for all x ∈ E and

∑
x∈E P0(x) = 1, then∑

x∈E Pt(x) < 1 for all t > 0. Consequently, if we want these intensities to determine a
process (Xt)t≥0, then we must allow Xt to be somewhere other than in E. 4

With Example 1 in mind, we introduce an additional state ∂ and require solutions of (2)
to satisfy both Pt(x) ≥ 0 and

∑
x∈E Pt(x) ≤ 1. We then define Pt(∂) = 1−

∑
x∈E Pt(x). For

solutions of the stochastic equation (5), we extend the domain of f to E ∪ {∂} by defining
f(∂) = 0 and define Xt = ∂, if Xt /∈ E.

If (Xt)t≥0 undergoes an explosion then we have XT∞ = ∂, and the transition rates may
only determine the process uniquely up to T∞. There may be different ways to extend the
definition of the process (Xt)t≥0 for t ≥ T∞, so that (5) holds.

The following definition is standard.

Definition 2. Let (Xt)t≥0 be a stochastic process. We say that (Xt)t≥0 is a stationary
process with stationary distribution π if the distribution of the translated process Xh+· does
not depend on h, and Xt is distributed according to π for any time t ∈ [0,∞).

Furthermore, we say that π is a stationary distribution for the process (Xt)t≥0 if by
assuming X0 ∼ π it follows that (Xt)t≥0 is a stationary process with stationary distribution
π.
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An irreducible closed set is a set Γ such that for any three states x1, x2 ∈ Γ and x3 /∈ Γ,
we have that X0 = x1 implies P (Xt = x2) > 0 and P (Xt = x3) = 0 for any t > 0. It
follows from standard Markov chain theory that the support of a stationary distribution is a
union of irreducible closed sets [24]. Furthermore, if the stochastic process satisfies (5) then
(2) holds, and a stationary distribution π is necessarily a constant solution to the forward
equation, that is (3) holds.

It is well know that if a continuous-time Markov chain is non-explosive, at most one
distribution satisfying (3) exists for any irreducible closed set [24]. The same does not
necessarily hold if the process is explosive. We will illustrate this in the following example.

Example 2. Consider a stochastic process on Z satisfying (5) with the following transition
rates:

q(n, n+ 1) = 4n if n ≥ 0;

q(n, n− 1) =
4n

2
if n ≥ 1;

q(n, n+ 1) =
4−n

2
if n ≤ −1;

q(n, n− 1) = 4−n if n ≤ 0,

Then, it can be checked that

π1(n) =
1

3
· 1

2|n|
and π2(n) =


1

3
· 1

4n
if n ≥ 0;

1

3
· 2−n+1 − 1

4−n
if n ≤ −1

are two different distributions satisfying (3), with support on the unique irreducible closed
set, that is Z. Hence, the process is explosive. 4

4 Reaction networks

We introduce terminology related to the models that motivated this work: reaction networks.
For more on this topic see [3, 4].

A reaction network is a triple (S, C,R), where S is a finite set of species, C is a finite set
of linear combinations of species on Z≥0, referred to as complexes, and finally R is a finite
subset of C × C, whose elements are called reactions. It is usual to assume that (y, y) /∈ R
for any complex y ∈ C. Usually, the kth reaction (yk, y

′
k) is denoted by yk → y′k. The

corresponding reaction vector is given by

ζk = y′k − yk, (7)

which represents the net gain of molecules given by the occurrence of the reaction.
As an example, for the reaction network

∅� A, A+B � 3B (8)
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we have

S = {A,B}, C = {∅, A,A+B, 3B} and

R = {∅ → A,A→ ∅, A+B → 3B, 3B → A+B}.

Arbitrarily enumerating species A and B as the first and second species, respectively, the
reaction vectors are [

1
0

]
,

[
−1

0

]
,

[
−1

2

]
, and

[
1
−2

]
. (9)

For notational convenience, we assume that the cardinality of S is d and the cardinality
of R is m. Any complex y in C can be naturally identified with a vector in Zd, whose ith
entry is the coefficient of y relative to the ith species. Note that this identification is being
utilized in (7).

The main mathematical models for describing the time evolution of a system of interacting
species are referred to as deterministic reaction system and stochastic reaction system.

Deterministic reaction system

The deterministic model is used to describe the time evolution of the concentrations of the
different species. For any t ≥ 0, let z(t) ∈ Rd

≥0 be the vector whose entries represent the
concentrations of the different species at time t. We associate with each reaction yk → y′k
a rate function λk : Rd

≥0 → R≥0, which describes how fast a given reaction occurs, given
a certain state of the system. A choice of such rate functions constitutes a deterministic
kinetics for the model. A reaction network endowed with a deterministic kinetics is called a
deterministic reaction system. The evolution of z(t) is described by the system of ordinary
differential equations

d

dt
z(t) =

m∑
k=1

ζkλk(z(t)).

A popular choice of kinetics is given by deterministic mass-action kinetics, which corre-
sponds to the hypothesis that the system is well stirred. In this case, the rate functions are
given by

λk(z) = κkz
yk

for some positive constants κk, called rate constants. A reaction network endowed with
deterministic mass-action kinetics is termed a deterministic mass-action system. Usually,
a deterministic mass-action system is introduced with a graph as in (4) and (8), where
numbers are placed next to the arrows to denote the rate constants associated with the
different reactions. The deterministic mass-action system associated with network (8) is

d

dt
z(t) = κ1

[
1
0

]
+ κ2z1(t)

[
−1

0

]
+ κ3z1(t)z2(t)

[
−1

2

]
+ κ4z2(t)

3

[
1
−2

]
.

where the enumeration of the rate constants agrees with the ordering given in (9).
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Stochastic reaction system

The stochastic model is used when the counts of the molecules of the different species is of
interest. In this case, the time evolution of the model is described by means of a continuous-
time Markov chain. For any t ≥ 0, let Xt ∈ Zd≥0 be the vector whose entries represent the
counts of the molecules of the different species at time t. We associate with each reaction
yk → y′k an intensity function λk : Zd≥0 → R≥0, which describes the propensity of the given
reaction to occur, given a certain state of the system. Note that the notation for such a
function is the same as in the deterministic setting, even though the domain of the functions
is different. A choice of intensity functions constitutes a stochastic kinetics for the model.
A reaction network endowed with a stochastic kinetics is called a stochastic reaction system.
The time evolution of Xt is then described by a continuous-time Markov chain, where the
transition rate from the state x to the state y is given by

q(x, y) =
∑

k:ζk=y−x

λk(x). (10)

To prevent species counts from becoming negative we require that λk(x) > 0 only if
xi ≥ yk,i for each i ∈ {1, . . . , d}. In the event of explosion we let Xt = ∂ for any t greater
than the time at which the explosion occurs. Note that with this choice the Markov property
of the process is preserved, and (5) holds. Moreover, Condition (1) is always satisfied for
transition rates given by (10), since the number of reactions is finite.

As in the deterministic setting, a popular choice of stochastic kinetics, called stochastic
mass-action kinetics, derives from the assumption that the system is well stirred. In this
case,

λk(x) = κk
x!

(x− yk)!
1{x≥yk}.

for some positive constants κk, which are called rate constants as in the deterministic model.
A reaction network endowed with stochastic mass-action kinetics is termed a stochastic mass-
action system. For some choice of rate constants, the intensity functions for the stochastic
mass-action system associated with reaction network (8) are

λ1(x) = κ1, λ2(x) = κ2x1, λ3(x) = κ3x1x2, and λ4(x) = κ4x2(x2 − 1)(x2 − 2),

where the reactions are again enumerated according to the ordering given in (9).
Exactly as for deterministic mass-action systems, a stochastic mass-action system is often

described by means of a graph as in (4) and (8), where numbers are placed besides the arrows
to denote the rate constants associated with the different reactions. It is therefore necessary
to make explicit whether the system is modeled deterministically or stochastically, unless it
is clear from the context.

Explosions in the context of reaction networks

We discuss here the stochastic mass-action system presented in the Introduction, which
provides an example of a stochastic reaction system for which a distribution satisfying (3)
exists, and for which an explosion occurs almost surely.
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Example 3. Consider the mass-action system (4), stochastically modeled. For convenience,
we repeat it here:

A
1−−⇀↽−−
2

2A
7−−⇀↽−−
4

3A
6−−⇀↽−−
1

4A
1−−→ 5A.

The stochastic model corresponds to a birth and death process whose state space is the
positive integers and whose birth and death rates are, respectively,

q(x, x+ 1) = x+ 7x(x− 1) + 6x(x− 1)(x− 2) + x(x− 1)(x− 2)(x− 3) = x4 for any x ≥ 1

and

q(x, x−1) = 2x(x−1)+4x(x−1)(x−2)+x(x−1)(x−2)(x−3) = x2(x−1)2 for any x ≥ 2.

It can be easily seen that

π(x) =
6

π2x2

is a distribution satisfying (3), and in particular is detailed balanced. Nevertheless, the
model is explosive: we can show this by proving that the embedded discrete time Markov
chain is transient, which follows from the following calculation

∞∑
n=2

n∏
x=2

q(x, x− 1)

q(x, x+ 1)
=
∞∑
n=2

n∏
x=2

x2(x− 1)2

x4
=
∞∑
n=2

n∏
x=2

(x− 1)2

x2
=
∞∑
n=2

1

n2
<∞,

and the results of Section 3.3 in [22]. Since the embedded discrete time Markov chain is
transient and the model has a distribution satisfying (3), it must be explosive [24]. 4

In Example 3, the solution of the corresponding deterministic mass-action system also
has a blow-up. Indeed, the differential equation governing the deterministic dynamics is

d

dt
z(t) = 2z(t)3 + 5z(t)2 + z(t),

whose solutions have a vertical asymptote for any z(0) > 0. Interestingly, knowing that the
associated ODE model is explosive is not enough to conclude that the stochastic model is
explosive or even transient. To support the last assertion, we give two additional examples.
In Example 4 all solutions of the deterministic model with positive initial condition have a
blow-up, while the corresponding stochastic process is non-explosive. Conversely, in Example
5 the ODE system has bounded solutions, while the associated stochastic model is explosive.

Example 4. Consider

A
1−−⇀↽−−
2

2A
3−−⇀↽−−
1

3A
1−−→ 4A

As in Example 3, the stochastic model corresponds to a birth and death process whose state
space is the positive integers. The birth and death rates are, respectively,

q(x, x+ 1) = x+ 3x(x− 1) + x(x− 1)(x− 2) = x3 for any x ≥ 1

and
q(x, x− 1) = 2x(x− 1) + x(x− 1)(x− 2) = x2(x− 1) for any x ≥ 2.
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The differential equation of the corresponding deterministic mass-action system is

d

dt
z(t) = z(t)2 + z(t),

so the deterministic model has a blow-up for any z(0) > 0. Nevertheless, in this case
the stochastic model is non-explosive and is in fact positive recurrent. We can check the
recurrence of the continuous-time Markov chain by

∞∑
n=2

n∏
x=2

q(x, x− 1)

q(x, x+ 1)
=
∞∑
n=2

n∏
x=2

x2(x− 1)

x3
=
∞∑
n=2

n∏
x=2

x− 1

x
=
∞∑
n=2

1

n
=∞.

and the results of Section 3.3 in [22]. Then, positive recurrence follows from the fact that

π(x) =
6

π2x2

satisfies (3), as can be easily checked. Note that π(·) on the left of the above denotes the
distribution, whereas the π on the right denotes the usual well-known constant. 4
Example 5. Consider the mass-action system

0
1−−⇀↽−−
1

A
1−−⇀↽−−
1

B

2C
1−−→ 3C

3C + A
1−−→ 2C + A.

Let z(t) be the solution of the deterministic model, with z1(t), z2(t) and z3(t) denoting the
concentration of the species A, B and C, respectively. Then, z(·) converges to the unique
positive equilibrium

(1, 1, 1)

for any initial condition z(0) ∈ R3
≥0, with z3(0) > 0 (otherwise the solution would tend to

(1, 1, 0)). Conversely, for any initial condition X0 ∈ Z3
≥0 with the counts of species C greater

than or equal to 2, the stochastic model undergoes an explosion almost surely: it occurs
infinitely often that the counts of A hit 0, and remain null for a positive time before either
0 → A or B → A takes place. Whenever the counts of A are 0, the counts of C can only
change through the reaction 2C → 3C. That is, the counts of C change accordingly to a
pure birth process with birth rate

q(x, x+ 1) = x(x− 1),

which is known to explode almost surely (see [24]). Hence, whenever the counts of A are
0, the counts of C have a positive probability of exploding. Furthermore, it can be shown
that the network 0 −−⇀↽−− A −−⇀↽−− B defines a positive recurrent Markov chain: indeed, the
associated model corresponds to two M/M/∞ queues linked to each other. Hence, the
counts of the molecules A hit 0 infinitely often, and an explosion of the counts of C will
occur almost surely. 4

In conclusion, determining when a stochastic mass-action system undergoes an explosion
remains in general a hard question. In particular, studying the behavior of the associated
deterministic model is in general not enough.
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Complex balancing

In the context of deterministic reaction systems, there exists a particular kind of equilibria,
referred to as complex balanced, whose properties have been intensively studied. The results
in the context of chemical reaction network theory date back to at least [14, 16]. Indeed,
complex balanced equilibria are a generalization of detailed balanced equilibria, which are
fundamental in the study of thermodynamics. We give the formal definition here.

Definition 3. We say that c ∈ Rd
≥0 is a complex balanced equilibrium if for any y ∈ C we

have ∑
k:yk=y

λk(c) =
∑
k:y′k=y

λk(c), (11)

where the sum on the left, respectively right, is over those reactions with y as source, respec-
tively product, complex.

Namely, at complex balanced equilbria the flux “entering” each complex equals the flux
“exiting” from it. For mass-action kinetics, (11) becomes∑

k:yk=y

κkc
yk =

∑
k:y′k=y

κkc
yk .

Complex balanced equilibria have particularly nice properties in the context of mass-action
systems. For example, positive complex balanced equilibria are locally asymptotically stable,
and if a positive complex balanced equilibrium exists, then all equilibria are necessarily
complex balanced [16]. Due to the last property, we can give the following definition:

Definition 4. We say that a deterministic mass-action system is complex balanced if one
(and therefore all) positive equilibrium of the system is complex balanced, and at least one
positive equilibrium exists.

For example, note that the deterministic mass-action system associated with the network
(8) with rate constants κ1 = κ2 = κ3 = κ4 = 1 is complex balanced with equilibrium
c = (1, 1). Note also that there can not be a choice of rate constants for the model (4) which
admit a complex balanced equilibrium as it is impossible to ever balance the complex 5A.

The relevance of complex balancing in the setting of stochastic reaction systems was first
explored in [2], where the following result is shown. Followup results include [1, 6].

Theorem 1. If a deterministic mass-action system with rate constants κk is complex bal-
anced and has a positive complex balanced equilibrium c, then the corresponding stochastically
modeled system, with the same choice of rate constants, admits a solution to (3) of the form

π(x) =
d∏
i=1

cxi
xi!
e−ci , x ∈ Zd≥0. (12)

The main utility of the above theorem resides in the fact that a reaction network will
admit a complex balanced equilibrium if the network satisfies two easily checked properties:
weak reversibility and a deficiency of zero [14]. It is straightforward to check that the network
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(8) is weakly reversible and has a deficiency of zero. Therefore, we know that it admits a
distribution satisfying (3) of the form (12). (Though to find the distribution on a particular
irreducible closed set of the state space, (12) needs to be projected onto it. See [30] for more
on this.)

In [6] the converse of Theorem 1 is proven. Also in [6] a definition of complex balancing in
the setting of stochastic reaction systems is provided and it is proven that a stochastic mass-
action system is complex balanced if and only if it is complex balanced when deterministically
modeled.

5 Main results

In this section, we consider a stochastic process (Xt)t≥0 satisfying (5), with transition rates
satisfying Condition 1. We then consider a distribution π which is a constant solution to the
forward equation, that is π satisfies (3). Here we prove that if∑

x∈Zd
≥0

π(x)q(x) <∞ (13)

(recall q(x) =
∑

y∈E\{x} q(x, y)), then (Xt)t≥0 is non-explosive. In turn, positive recurrence of

(Xt)t≥0 within the irreducible closed sets where π is positive is assured. Finally, by standard
Markov chain theory, it follows that π describes the limit distribution of the model restricted
to irreducible closed sets where π is positive.

We state here our main result.

Theorem 2. Consider a stochastic process (Xt)t≥0 on a countable state space E ⊂ Zd,
satisfying (5) and whose rates satisfy Condition 1. Assume there exists a distribution π
satisfying (3), such that (13) holds. Then, the process (Xt)t≥0 is non-explosive if the support
of P0 is contained in the support of π.

Proof. In the Appendix, we will show that under the conditions of Theorem 2 a stationary
process (X̃t)t≥0 satisfying (5) and with stationary distribution π exists. Note that, as already
discussed in the Introduction, (13) states that the expected number of jumps of (X̃t)t≥0 per
unit time is finite. Hence, (X̃t)t≥0 necessarily has finitely many jumps in compact time
intervals, and is non-explosive. It follows that any process with the support of the initial
distribution contained in the support of π is non-explosive, and this concludes the proof.

Remark 1. It is worth noting that (13) holds if and only if the discrete time embedded
process of (Xt)t≥0 is positive recurrent. We will show it here.

Up to the potential explosion at time T∞, (Xt)t≥0 is a continuous-time Markov chain.
Let {Zn}n∈Z≥0

be the embedded discrete time Markov chain of (Xt)0≤t<T∞. The transition
probabilities for Zn are given by

p(x, y) =
q(x, y)

q(x)
.

Set

πZ(x) = π(x)q(x). (14)

12



Then, πZ can be normalized to be a stationary distribution for Zn. To show this, we need to
show that for any x ∈ E,

πZ(x) =
∑
y∈E

πZ(y)p(y, x), (15)

and that ∑
x∈Zd

≥0

πZ(x) <∞. (16)

Plugging πZ from (14) into the right-hand side of (15) yields∑
y∈E

πZ(y)p(y, x) =
∑
y∈E

π(y)q(y, x) = π(x)q(x),

where the final equality holds since π satisfies (3). Due to (14) we have what we want.
Next, ∑

x∈E

πZ(x) =
∑
x∈E

π(x)q(x) <∞

by assumption. Hence, all the points in the support of π must be recurrent for the process
(Zn)n∈Z≥0

.

We can specialize to the case of reaction network theory, in which case Theorem 2 becomes
the following.

Corollary 1. Let (Xt)t≥0 be the continuous-time Markov chain associated with a stochastic
reaction system. Assume that a distribution π satisfying (3) exists, such that

∑
x∈Zd

≥0

π(x)
m∑
k=1

λk(x) <∞. (17)

Then, the process (Xt)t≥0 is non-explosive if the support of P0 is in the support of π.

The proof relies on Theorem 2 and on the fact that in the case of stochastic reaction
systems we have

q(x) =
m∑
k=1

λk(x).

Note that Corollary 1 provides sufficient conditions for non-explosivity. However these con-
ditions are not necessary. For example, consider the model associated to the mass-action
system in Example 4, which we have already proved to be non-explosive. In this case

m∑
k=1

∑
x∈Zd

≥0

π(x)λk(x) =
∞∑
x=0

6(2x3 − x2)
π2x2

=∞.
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Since the model is positive recurrent and the state space is irreducible, it can be further
shown that

π(x) =
6

π2x2

is the unique distribution satisfying (3). Hence, in this case, (17) does not hold for any
distribution satisfying (3). In the spirit of Remark 1, it is worth noting that in this case, the
embedded discrete time Markov chain is null recurrent.

The following is a consequence of Corollary 1, which for practical purposes is the main
result of the paper.

Theorem 3. For any initial distribution, complex balanced stochastic mass-action systems
are non-explosive.

Proof. By Theorem 1, the state space of a complex balanced stochastic mass-action system
is a union of irreducible closed sets, and a distribution satisfying (3) of the form

π(x) = M
cx

x!
for any x ∈ Zd≥0

exists, for a suitable positive vector c and a finite normalizing constant M . Hence, the proof
follows from Corollary 1, as∑

x∈Zd
≥0

π(x)λk(x) = M
∑
x∈Zd

≥0

cx

x!
λk(x) <∞,

since under mass-action kinetics the rates λk are polynomials with fixed degree.

Appendix

Let E ⊂ Zd and for x, y ∈ E, x 6= y, let q(x, y) ≥ 0 and assume Condition 1 is satisfied. As
already discussed in the Introduction, a continuous-time Markov chain on E with transition
intensities {q(x, y)} is intuitively a stochastic process (Xt)t≥0 in E such that

P (Xt+h = y|FXt ) = q(Xt, y)h+ o(h), t, h ≥ 0,

where {FXt } is the filtration generated by (Xt)t≥0. There are several ways of making this
intuition precise.

Definition 5. a) The one-dimensional distributions of (Xt)t≥0 satisfy the forward or master
equation if for every x ∈ E

d

dt
Pt(x) =

∑
y∈E\{x}

Pt(y)q(y, x)−
∑

y∈E\{x}

Pt(x)q(x, y), (18)

where the derivative at t = 0 is interpreted as a right derivative.
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b) Consider
D(E) = {f : E → R : #{x ∈ E : f(x) 6= 0} <∞}

and define the linear operator A on D(E) by

Af(x) =
∑

y∈E\{x}

q(x, y)(f(y)− f(x)).

Then (Xt)t≥0 is a solution of the martingale problem for A if

f(Xt)− f(X0)−
∫ t

0

Af(Xs)ds (19)

is a {FXt }-martingale for each f ∈ D(E).

c) For x, y ∈ E, x 6= y, let (Nxy
t )t≥0 be a Poisson process with intensity q(x, y). The

stochastic equation for (Xt)t≥0 is given by

f(Xt) = f(X0) +
∑

x,y∈E:x 6=y

∫ t

0

(f(y)− f(Xs−))1{Xs−=x}dN
xy
s . (20)

Remark 2. Note that by Condition 1, for f ∈ D(E), supx∈E |Af(x)| <∞.

Furthermore, we introduce an additional state ∂ as done in the main text. Solutions of
(18) need to satisfy Pt(x) ≥ 0,

∑
x∈E Pt(x) ≤ 1 and Pt(∂) = 1−

∑
x∈E Pt(x). Moreover, for

solutions of the martingale problem and the stochastic equation, we extend f ∈ D(E) to
E ∪ {∂} by defining f(∂) = 0 and define Xt = ∂, if Xt /∈ E.

With this understanding of solutions, it follows that any solution of the stochastic equa-
tion (20) is a solution of the martingale problem. Indeed, we can write

f(Xt)− f(X0)−
∫ t

0

Af(Xs)ds =
∑

x,y∈E:x 6=y

∫ t

0

(f(y)− f(Xs−))1{Xs−=x}dÑ
xy
s ,

where
Ñxy
s = Nxy

s − q(x, y)s

is a martingale. Moreover, for any solution of the martingale problem, Pt(x) = P (Xt = x) is a
solution of (18): this follows by considering f = 1{x} for x ∈ E and by taking expectation [4].
The converse of these observations also holds.

Theorem 4. If (Pt)t≥0 is a solution of (18), then there exists a solution of the martingale
problem such that for x ∈ E∪∂, P (Xt = x) = Pt(x). If (Xt)t≥0 is a solution of the martingale
problem, then there exists a solution (X̃t)t≥0 of the stochastic equation such that (Xt)t≥0 and
(X̃t)t≥0 have the same distribution.

Proof. The first statement follows from Corollary 3.2 of [21]. The second statement can be
proved by arguments similar to the proof of (17) in [20].
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It follows from Theorem 4 that weak uniqueness for any of the three characterizations
implies weak uniqueness for the other two, for a fixed initial distribution. Moreover, the law
of a solution to the stochastic equation is uniquely determined up to time T∞, where T∞ is
defined as in Definition 1. This observation provides the proof of the next result.

Theorem 5. If for a fixed initial distribution P0 we have P (T∞ =∞) = 1, then there exists a
unique process (Xt)t≥0 with initial distribution P0 satisfying any of the three characterization
of Definition 5.

We conclude with the following result, which can be read from [13, Theorem 9.17 of
Chapter 4] and is due to [12].

Theorem 6. If π is a constant solution to the forward Kolmogorov equation, namely if∑
y∈E\{x}

π(x)q(x, y) =
∑

y∈E\{x}

π(y)q(y, x),

then there exists a solution of the martingale problem which is a stationary process with
stationary distribution π.

Note that under the hypotheses of Theorem 6, Theorem 4 implies the existence of a
solution to the martingale problem with Pt = π for all t ≥ 0, and a stationary solution to
the stochastic equation (20).
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