5,072 research outputs found
Molecular beam epitaxial growth of high-quality InSb on InP and GaAs substrates
Epitaxial layers of InSb were grown on InP and GaAs substrates by molecular beam epitaxy. The dependence of the epilayer quality on flux ratio, J sub Sb4/J sub In, was studied. Deviation from an optimum value of J sub Sb4/J sub In (approx. 2) during growth led to deterioration in the surface morphology and the electrical and crystalline qualities of the films. Room temperature electron mobilities as high as 70,000 and 53,000 sq cm /V-s were measured in InSb layers grown on InP and GaAs substrates, respectively. Unlike the previous results, the conductivity in these films is n-type even at T = 13 K, and no degradation of the electron mobility due to the high density of dislocations was observed. The measured electron mobilities (and carrier concentrations) at 77 K in InSb layers grown on InP and GaAs substrates are 110,000 sq cm/V-s (3 x 10(15) cm(-3)) and 55,000 sq cm/V-s (4.95 x 10(15) cm(-3)), respectively, suggesting their application to electronic devices at cryogenic temperatures
The Mean Drift: Tailoring the Mean Field Theory of Markov Processes for Real-World Applications
The statement of the mean field approximation theorem in the mean field
theory of Markov processes particularly targets the behaviour of population
processes with an unbounded number of agents. However, in most real-world
engineering applications one faces the problem of analysing middle-sized
systems in which the number of agents is bounded. In this paper we build on
previous work in this area and introduce the mean drift. We present the concept
of population processes and the conditions under which the approximation
theorems apply, and then show how the mean drift is derived through a
systematic application of the propagation of chaos. We then use the mean drift
to construct a new set of ordinary differential equations which address the
analysis of population processes with an arbitrary size
Validation of the frequency modulation technique applied to the pulsating Sct- Dor eclipsing binary star KIC 8569819
KIC 8569819 is an eclipsing binary star with an early F primary and G secondary in a 20.85-d eccentric orbit. The primary is a δ Sct–γ Dor star pulsating in both p modes and g modes. Using four years of Kepler Mission photometric data, we independently model the light curve using the traditional technique with the modelling code PHOEBE, and we study the orbital characteristics using the new frequency modulation technique. We show that both methods provide the equivalent orbital period, eccentricity and argument of periastron, thus illustrating and validating the FM technique. In the amplitude spectrum of the p-mode pulsations, we also discovered an FM signal compatible with a third body in the system, a low-mass M dwarf in an 861-d orbit around the primary pair. However, the eclipses show no timing variations, indicating that the FM signal is a consequence of the intrinsic change in pulsation frequency, thus providing a cautionary tale. Our analysis shows the potential of the FM technique using Kepler data, and we discuss the prospects to detect planets and brown dwarfs in Kepler data for A and F stars even in the absence of transits and with no spectroscopic radial velocity curves. This opens the possibility of finding planets orbiting hotter stars that cannot be found by traditional techniques
Heartbeat stars and the ringing of tidal pulsations
With the advent of high precision photometry from satellites such as Kepler and CoRoT, a whole new layer of interesting and astounding astronomical objects has been revealed: heartbeat stars are an example of such objects. Heartbeat stars are eccen- tric ellipsoidal variables that undergo strong tidal interactions when the stars are almost in contact at the time of closest approach. These interactions deform of the stars and cause a notable light curve variation in the form of a tidal pulse. A subset of these objects (∼20%) show prominent tidally induced pulsations: pulsations forced by the binary orbit. We now have a fully functional code that models binary star features (using phoebe) and stellar pulsations simultaneously, enabling a complete and accurate heartbeat star model to be determined. In this paper we show the results of our new code, which uses emcee, a variant of mcmc, to generate a full set of stellar parameters. We further highlight the interesting features of KIC 8164262, including its tidally induced pulsations and resonantly locked pulsations
Infrared emission from interstellar dust cloud with two embedded sources: IRAS 19181+1349
Mid and far infrared maps of many Galactic star forming regions show multiple
peaks in close proximity, implying more than one embedded energy sources. With
the aim of understanding such interstellar clouds better, the present study
models the case of two embedded sources. A radiative transfer scheme has been
developed to deal with an uniform density dust cloud in a cylindrical geometry,
which includes isotropic scattering in addition to the emission and absorption
processes. This scheme has been applied to the Galactic star forming region
associated with IRAS 19181+1349, which shows observational evidence for two
embedded energy sources. Two independent modelling approaches have been
adopted, viz., to fit the observed spectral energy distribution (SED) best; or
to fit the various radial profiles best, as a function of wavelength. Both the
models imply remarkably similar physical parameters.Comment: 17 pages, 6 Figures, uses epsf.sty. To appear in Journal of
Astronophysics & Astronom
The first evidence for multiple pulsation axes: a new roAp star in the Kepler field, KIC 10195926
We have discovered a new rapidly oscillating Ap star among the Kepler Mission
target stars, KIC 10195926. This star shows two pulsation modes with periods
that are amongst the longest known for roAp stars at 17.1 min and 18.1 min,
indicating that the star is near the terminal age main sequence. The principal
pulsation mode is an oblique dipole mode that shows a rotationally split
frequency septuplet that provides information on the geometry of the mode. The
secondary mode also appears to be a dipole mode with a rotationally split
triplet, but we are able to show within the improved oblique pulsator model
that these two modes cannot have the same axis of pulsation. This is the first
time for any pulsating star that evidence has been found for separate pulsation
axes for different modes. The two modes are separated in frequency by 55
microHz, which we model as the large separation. The star is an alpha^2 CVn
spotted magnetic variable that shows a complex rotational light variation with
a period of Prot = 5.68459 d. For the first time for any spotted magnetic star
of the upper main sequence, we find clear evidence of light variation with a
period of twice the rotation period; i.e. a subharmonic frequency of . We propose that this and other subharmonics are the first observed
manifestation of torsional modes in an roAp star. From high resolution spectra
we determine Teff = 7400 K, log g = 3.6 and v sin i = 21 km/s. We have found a
magnetic pulsation model with fundamental parameters close to these values that
reproduces the rotational variations of the two obliquely pulsating modes with
different pulsation axes. The star shows overabundances of the rare earth
elements, but these are not as extreme as most other roAp stars. The spectrum
is variable with rotation, indicating surface abundance patches.Comment: 17 pages; 16 figures; MNRA
National FCEV Learning Demonstration: Spring 2011 All Composite Data Products With Updates Through March 29, 2011
This presentation from the U.S. Department of Energy's National Renewable Energy Laboratory includes all the composite data products produced to date (with updates through March 29, 2011) as part of the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration
The Emerging Scholarly Brain
It is now a commonplace observation that human society is becoming a coherent
super-organism, and that the information infrastructure forms its emerging
brain. Perhaps, as the underlying technologies are likely to become billions of
times more powerful than those we have today, we could say that we are now
building the lizard brain for the future organism.Comment: to appear in Future Professional Communication in Astronomy-II
(FPCA-II) editors A. Heck and A. Accomazz
Physics of Eclipsing Binaries: Heartbeat Stars and Tidally Induced Pulsations
Heartbeat stars are a relatively new class of eccentric ellipsoidal variable first discovered by Kepler. An overview of the current field is given with details of some of the interesting objects identified in our current Kepler sample of 135 heartbeats stars. Three objects that have recently been or are undergoing detailed study are described along with suggestions for further avenues of research. We conclude by discussing why heartbeat stars are an interesting new tool to study tidally induced pulsations and orbital dynamics
Discovery of unusual pulsations in the cool, evolved Am stars HD 98851 and HD 102480
The chemically peculiar (CP) stars HD 98851 and HD 102480 have been
discovered to be unusual pulsators during the ``Naini Tal Cape Survey''
programme to search for pulsational variability in CP stars. Time series
photometric and spectroscopic observations of these newly discovered stars are
reported here. Fourier analyses of the time series photometry reveal that HD
98851 is pulsating mainly with frequencies 0.208 mHz and 0.103 mHz, and HD
102480 is pulsating with frequencies 0.107 mHz, 0.156 mHz and 0.198 mHz. The
frequency identifications are all subject to 1 d cycle count
ambiguities. We have matched the observed low resolution spectra of HD 98851
and HD 102480 in the range 3500-7400 \AA with theoretical synthetic spectra
using Kurucz models with solar metallicity and a micro-turbulent velocity 2 km
s. These yield K, log for HD 98851
and K, log for HD 102480. We
determined the equivalent H-line spectral class of these stars to be F1 IV and
F3 III/IV, respectively. A comparison of the location of HD 98851 and HD 102480
in the HR diagram with theoretical stellar evolutionary tracks indicates that
both stars are about 1-Gyr-old, 2- stars that lie towards the red
edge of the Sct instability strip. We conclude that HD 98851 and HD
102480 are cool, evolved Am pulsators. The light curves of these pulsating
stars have alternating high and low amplitudes, nearly harmonic (or
sub-harmonic) period ratios, high pulsational overtones and Am spectral types.
This is unusual for both Am and Sct pulsators, making these stars
interesting objects.Comment: 9 pages, 6 Figures, Accepted for publication in MNRA
- …