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ABSTRACT
KIC 8569819 is an eclipsing binary star with an early F primary and G secondary in a 20.85-d
eccentric orbit. The primary is a δ Sct–γ Dor star pulsating in both p modes and g modes.
Using four years of Kepler Mission photometric data, we independently model the light curve
using the traditional technique with the modelling code PHOEBE, and we study the orbital
characteristics using the new frequency modulation technique. We show that both methods
provide the equivalent orbital period, eccentricity and argument of periastron, thus illustrating
and validating the FM technique. In the amplitude spectrum of the p-mode pulsations, we also
discovered an FM signal compatible with a third body in the system, a low-mass M dwarf
in an 861-d orbit around the primary pair. However, the eclipses show no timing variations,
indicating that the FM signal is a consequence of the intrinsic change in pulsation frequency,
thus providing a cautionary tale. Our analysis shows the potential of the FM technique using
Kepler data, and we discuss the prospects to detect planets and brown dwarfs in Kepler data
for A and F stars even in the absence of transits and with no spectroscopic radial velocity
curves. This opens the possibility of finding planets orbiting hotter stars that cannot be found
by traditional techniques.

Key words: techniques: radial velocities – stars: individual: KIC 8569819 – stars: oscilla-
tions – stars: variables: δ Scuti.

1 IN T RO D U C T I O N

Binary stars are a primary source of fundamental information about
stars, particularly their masses and radii. For asteroseismology,
modelling of stellar pulsations depends on external determinations
of effective temperature and surface gravity, usually from spec-
troscopy. For heat-driven pulsators where masses and radii cannot
be derived from the pulsation frequency spectrum, independent
information from eclipsing binary modelling provides important
constraints that narrow the range of possible asteroseismic models.
Where pulsating stars are found in binaries, the synergy of the inde-
pendent techniques from asteroseismology and from the physics of
the binary orbit greatly improves our astrophysical inferences about
the stars and our confidence in the models that describe them.

The Kepler Space Mission collected time series light curves of
over 190 000 stars over its four-year main mission lifetime from
2009 to 2013. Kepler has an orbital period about the Sun of

� E-mail: dwkurtz@uclan.ac.uk

372.4536 d; during the main mission, the satellite performed four
quarterly rolls (quarters are just over 93 d) per orbit of the Sun. It
acquired data of the same field with a ∼92 per cent duty cycle. Its
mission is to find extrasolar planets, with emphasis on Earth-like
planets and planets in the habitable zone. Its planet candidate list
has 4234 entries1 as of 2014 August, nearly 1000 of which have
been confirmed; in time, 95 per cent are expected to be confirmed. It
also has a list of 2645 EB stars.2 More than 500 main-sequence and
subgiant solar-like pulsators have been studied asteroseismically
with fundamental parameters derived (Chaplin et al. 2014). These
are critical for the characterization of extrasolar planets orbiting
those stars, so that the asteroseismology and planet studies are syn-
ergistic. About 13 000 red giant stars have been studied asteroseis-
mically (Mosser, Belkacem & Vrard 2013; Stello et al. 2013), lead-
ing to a better understanding of the stellar structure of giants, and
even allowing the determination of core and surface rotation rates

1 http://kepler.nasa.gov/Mission/discoveries/candidates/
2 http://keplerebs.villanova.edu
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(Beck et al. 2012), initiating observational studies of angular mo-
mentum transport in stars with stellar evolution. With Kepler data,
there has now even been an asteroseismic determination of core-to-
surface rotation in a main-sequence star (Kurtz et al. 2014).

The emphasis of the Kepler search for habitable planets has been
on cool stars, where transits are easier to detect because of the larger
planet-to-star size ratio and the proximity of the habitable zones to
the host star, hence the shorter orbital periods. The pulsations in
cooler stars are stochastically excited by energy in the atmospheric
convection zone. The stars show high radial overtone pulsations
that are asymptotically nearly equally spaced in frequency, allowing
mode identification, and ultimately the extraction of stellar mass,
radius and age (Aerts, Christensen-Dalsgaard & Kurtz 2010). The
best-calibrated cases, such as α Cen (see chapter 7.2.3 of Aerts et al.
2010), allow mass and radius to be determined independently from
astrometry and from interferometry. Comparison of the fundamental
techniques with the asteroseismic results suggests that asteroseismic
masses and radii are as accurate as 2 per cent in the best cases.

Hotter stars in Kepler data are studied less. This is particularly
true for the δ Sct and γ Dor stars, where matching models to the
observed frequency spectra remains a challenge. Compared with
cooler stars, hot stars are not well suited for planetary searches
either, for two principal reasons: (i) the transits across the much
brighter discs are smaller and more difficult to detect, and can be
hidden in the much larger amplitude pulsational variations of most
A stars; and (ii) ground-based radial velocity studies to determine
the masses of companion exoplanets are more difficult because
of the higher masses of the hotter main-sequence stars and because
of the rotationally broadened spectral lines compared to cooler stars
below the Kraft (rotational) break near mid-F spectral type. The
first example of a transiting exoplanet orbiting a pulsating δ Sct
star is WASP-33b (HD 15082), where δ Sct pulsations of ampli-
tude about 1 mmag were found subsequent to the transit discovery
(Herrero et al. 2011). This star has generated considerable inter-
est with further infrared (Deming et al. 2012) and optical studies
and models (Kovács et al. 2013; von Essen et al. 2014). The inter-
est is primarily in the use of pulsation characteristics as probes of
interactions between the planet and the star. The extrasolar plan-
ets encyclopedia3 lists only a handful of planets around A stars, the
most notable being Fomalhaut b (Kalas et al. 2013), the four planets
orbiting the γ Dor star HR 8799 (Marley et al. 2012), and V342 Peg
(Esposito et al. 2013), which have been directly imaged. In conse-
quence, the prevalence of exoplanets orbiting upper main-sequence
stars is essentially unknown.

Shibahashi & Kurtz (2012) developed a new technique for de-
termining orbital parameters of binaries that is based on frequency
modulation. This dramatically extends our ability to study binary
stars in the Kepler data set by providing a method that yields tra-
ditional ‘spectroscopic’ orbital parameters from photometry alone.
Many of the thousands of δ Sct stars in the Kepler data set have sta-
ble pulsation frequencies. For those stars that are in binary systems,
the pulsation frequency is modulated by the orbital motion, pro-
ducing equally split frequency multiplets in the amplitude spectrum
that can be unambiguously identified. Shibahashi & Kurtz (2012)
show how these multiplets can be used to determine the orbital
frequency, the mass function (as in a spectroscopic single-lined bi-
nary star), a sin i for the pulsating primary star and the eccentricity.
More recently, Shibahashi, Kurtz & Murphy (in preparation) have
extended the technique to include the determination of the argument

3 http://exoplanet.eu

of periastron. These are all parameters that in the past required a
large spectroscopic data set to determine radial velocities. Recently,
Murphy et al. (2014) developed an analogous technique based on
phase modulation (PM). This technique is equivalent to FM, and is
more easily automated.

In this paper, we focus on KIC 8569819, an EB in an eccentric
orbit with a primary star that is a pulsating δ Sct–γ Dor star. We
derive orbital parameters independently from both the EB light
curve fitting, and from the FM technique.

2 K I C 8 5 6 9 8 1 9 : A N E C L I P S I N G B I NA RY FM
STAR

KIC 8569819 is a Kp = 13.0 eclipsing binary with Teff = 7100 K
and log g = 4.0 (cgs units) in the Kepler Input Catalogue (KIC;
see Huber et al. 2014 for a discussion of errors in the KIC; at
this temperature and surface gravity, they are about ±250 K in Teff

and ±0.2 in log g). The contamination parameter is 0.237, but a
visual check of the pixel-level data shows that the mask used in the
reductions does not include the nearest possible contaminating star.

The data used for the analysis in this paper are Kepler quarters 0
to 17 (Q0–Q17) long cadence (LC) data with 29.4-min integration
times. We used the multiscale, maximum a posteriori (msMAP)
pipeline data; information on the reduction pipeline can be found
in the Kepler data release notes4 21. Fig. 1 depicts a light curve for
KIC 8569819 for a section of the LC msMAP data where we can see
both primary and secondary eclipses. The separation between the
eclipses is close to 0.5, but closer examination shows that primary
eclipse lasts for about 13 h, and secondary for 6.5 h, requiring a
high eccentricity of e ≈ 0.4, detailed in Section 4. The eclipses are
flat-bottomed (total), therefore i ≈ 90◦. The primary eclipse takes
longer: it occurs near apastron, with the cooler companion being in
front.

The FM analysis of KIC 8569819 is presented in Section 3 and
the EB light curve analysis in Section 4. These two analyses were
performed independently for objective comparison of the results.

3 FM A NA LY S I S O F K I C 8 5 6 9 8 1 9

3.1 FM of ν1: the 20.85-d binary

For the analysis of the pulsation frequencies, we have masked out the
eclipses from the light curve. This is necessary because of the high-
amplitude peaks they generate at low frequency in the amplitude
spectrum; these have spectral window patterns that extend out to the
δ Sct range of the pulsation frequencies. The pulsation amplitudes
also change during eclipses because of the changing background
light level, and because of the partial obscuration of the pulsating
star during ingress and egress of the primary eclipse. That generates
amplitude modulation sidelobes to the pulsation peaks separated by
exactly the orbital frequency, hence overlapping with the FM signal
that we are studying. Unless the binary star model encompasses a
full description of the pulsations, masking the data set is preferred
to subtracting a binary model fit alone.

Fig. 2 shows the amplitude spectrum out to nearly the Nyquist
frequency (∼24.5 d−1) for KIC 8569819 for the masked Q0–17 LC
data. There are pulsations in both the g-mode and p-mode frequency
regions. Since the relative amplitude of the FM sidelobes to the
amplitude of the central peak, i.e. the detectability of the FM signal,

4 https://archive.stsci.edu/kepler/data release.html
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Figure 1. A phased light curve of KIC 8569819 for the Q0–17 msMAP LC data with no further processing. The left-hand panel shows three cycles of the
20.84-d binary orbit with primary and secondary eclipses. The right-hand panel shows the full Q0–17 LC data set phased on the orbital period.

Figure 2. Amplitude spectrum for the masked Q0–Q17 light curve. In the
low-frequency range between 0–5 d−1, there are g-mode pulsation frequen-
cies. In the high-frequency range between 12–24 d−1, there are p-mode
peaks.

is proportional to ν, we concentrate our analysis only on the p-mode
frequency range. The low, equally spaced combs of peaks around
the highest pulsation peaks in Fig. 2 are part of the window function
resulting from the masking of the light curve. Those are spectral
window sidelobes at the orbital frequency, but they are removed by
pre-whitening of the main peak and leave no trace in the amplitude
spectrum of the residuals, hence they do not perturb our analysis.

The highest amplitude δ Sct p mode is at a frequency ν1 =
15.857 4687(5) d−1 and is shown in the top panel of Fig. 3. For an
estimate of the p-mode radial overtone, it is useful to calculate the
Q value for ν1. This is defined to be

Q = Posc

√
ρ

ρ�
, (1)

Figure 3. Top: an amplitude spectrum for the masked Q0–Q17 light curve
in the δ Sct frequency range of the highest amplitude p mode. Bottom:
after pre-whitening ν1. There are important peaks on either side of ν1

that are discussed in the text. Here, note the equally spaced sidelobes near
ν = 15.81 d−1 and 15.91 d−1 that are separated from ν1 by νorb. These are
the FM first sidelobes. There is some visual indication of the presence of
the second sidelobes.

MNRAS 446, 1223–1233 (2015)
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Table 1. A non-linear least-squares fit of the highest amplitude frequency seen in Fig. 3 and its first
orbital FM sidelobes to the Q0–Q17 LC masked Kepler data for KIC 8569819. The frequencies
are separated by νorb = 0.047 964 ± 0.000 014 d−1. The zero-point in time for the phase is BJD
245 5672.2.

Frequency Amplitude Phase
(d−1) (mmag) (rad)

ν1 − νorb 15.809 5167 ± 0.000 0211 0.089 ± 0.005 2.9067 ± 0.0561
ν1 15.857 4721 ± 0.000 0005 4.150 ± 0.005 2.4425 ± 0.0012
ν1 + νorb 15.905 4555 ± 0.000 0197 0.096 ± 0.005 − 1.2593 ± 0.0524

νorb1 = ν1 − (ν1 − νorb) 0.0479 55 ± 0.000 021
νorb2 = (ν1 + νorb) − ν1 0.0479 73 ± 0.000 020
νorb1 − νorb2 0.000 018 ± 0.000 029
νorb ≡ 〈νorb1 , νorb2 〉 0.0479 64 ± 0.000 014
Porb (d) 20.849 ± 0.006

where Posc is the pulsation period and ρ is the mean density. Q is
known as the ‘pulsation constant’. Using the definition of mean den-
sity as ρ = M

4
3 πR3 , surface gravity as g = GM

R2 , absolute luminosity as

L = 4πR2σT 4
eff and absolute magnitude as Mbol =−2.5log L + con-

stant, equation (1) can be rewritten as

log Q = −6.454 + log Posc + 1

2
log g + 1

10
Mbol + log Teff, (2)

where Posc is given in d, log g is in cgs units and Teff is in K. Using
the KIC values of Teff = 7100 K and log g = 4.0, and estimating the
bolometric magnitude to be 2.8, we obtain Q = 0.030, typical of
fundamental to first overtone pulsation in δ Sct stars (Stellingwerf
1979). We thus conclude that the p-mode frequencies are likely to
be due to low overtone modes. Pre-whitening the data by ν1 gives
the amplitude spectrum of the residuals depicted in the bottom panel
of Fig. 3, where the first FM orbital sidelobes are annotated.

Table 1 shows the non-linear least-squares fit of ν1 and its first
FM orbital sidelobes. The formal errors from the least-squares fit in-
clude all of the variance in the data, which (as can be seen in Fig. 2)
includes astrophysical variance due to all pulsation frequencies in
both the g-mode and p-mode regions. To estimate the intrinsic scat-
ter, we focused on a featureless section of the amplitude spectrum
in the range 9–10 d−1. The highest peaks in that region have ampli-
tudes of ∼20 μmag. For an amplitude spectrum with this density of
frequencies, even for normally distributed data we expect numer-
ous peaks with amplitudes greater than 3σ , and in practice we find
that the highest amplitude peaks have amplitudes about four times
the formal amplitude error for the least-squares fit. We therefore
estimate the amplitude error to be 0.005 mmag (20 μmag/4). Since
phase and frequency errors scale with amplitude error (Montgomery
& O’Donoghue 1999), we scale the formal errors for frequency and
phase in Table 1 by the same factor as the revised error in amplitude.

The frequency triplet in Table 1 is equally split; the two split-
tings agree to 0.6σ , suggesting that our reduced errors are conser-
vative. The average of the two splittings is the orbital frequency,
νorb = 0.047 964 ± 0.000 014 d−1. This differs by 0.14σ from
νorb = 0.047 962 d−1 obtained by phase-folding the eclipses (cf.
Fig. 1). Phase-folding provides a more precise orbital frequency
than the FM signal because of the much higher signal-to-noise ratio
for the eclipses compared to the orbital pulsational frequency shifts.
The agreement between the two methods is excellent.

Next, we re-fit the frequency multiplet by forcing the splitting
to be exactly equal. There is no significant difference to the result
whether the orbital period is chosen from the frequency splitting
or from phase-folding, so to keep the FM analysis independent, we

Table 2. A least-squares fit of the frequency quintuplet for the highest
amplitude mode to the Q0–Q17 LC Kepler data for KIC 8569819. The
frequencies of the multiplet are separated by the orbital frequency,
νorb = 0.0479 64 ± 0.000 014 d−1 (Porb = 20.849 ± 0.006 d). The
zero-point for the phases has been chosen to be a time when the
phases of the first sidelobes to the highest amplitude frequency are
equal, t0 = BJD 245 5679.120 90. It can be seen that the phases of
the first sidelobes differ from that of the phase of ν1 by −1.62 ± 0.06
rad, which is equal to π/2 as required by the theory (Shibahashi &
Kurtz 2012). The mass function and orbital eccentricity are derived
from the sidelobes’ amplitudes.

Frequency Amplitude Phase
(d−1) (mmag) (rad)

ν1 − 2νorb 15.761 5434 0.014 ± 0.005 − 3.0812 ± 0.2775
ν1 − νorb 15.809 5077 0.089 ± 0.005 − 0.7630 ± 0.0561
ν1 15.857 4721 4.148 ± 0.005 0.8593 ± 0.0012
ν1 + νorb 15.905 4365 0.096 ± 0.005 − 0.7630 ± 0.0541
ν1 + 2νorb 15.953 4009 0.022 ± 0.005 2.9350 ± 0.2029

use the value from Table 1. For the study of orbital characteristics
using the FM technique (Shibahashi & Kurtz 2012), it is important
that the splittings are exactly equal; we are then able to use the phase
information, since frequency and phase are coupled in the Fourier
sinusoidal description.

This coupling between frequency and phase is easy to see.
The function we fit to our data has the form cos (ωt + φ),
where ω = 2πν is the angular frequency. If we imagine a
change to the angular frequency such that ω′ = ω + δω,
then we can write the argument of the cosine function to be
ω′t +φ = (ω + δω)t +φ =ωt + (φ + δωt) =ωt + (φ + δφ) =ωt +φ′,
where φ′ = φ + δωt. It is not possible to distinguish between a
change δω to the frequency or a change δφ to the phase without an
external constraint.

Table 2 lists the results of fitting the equally spaced quintuplet
for the highest amplitude δ Sct mode to the data. The zero-point
in time, BJD 245 5679.120 90 ± 0.26, has been chosen to set the
phases of the first FM sidelobes equal; the error in the zero-point is
derived from 1σ in the difference between the sidelobe phases. This
zero-point corresponds to the time when the motion of the stars is
perpendicular to the line of sight. Thus, by measuring the difference
between the zero-point time and the time of superior conjunction,
we can derive the argument of periastron. The time difference can be
converted to a phase difference, and the phase difference, via mean
and eccentric anomaly, converted to true anomaly. The true anomaly
is a measure of the angle between the point of the orbit where

MNRAS 446, 1223–1233 (2015)
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vr = 0 and superior conjunction; a simple Keplerian integrator can
be employed to solve this for the argument of periastron, which
yields ω = 4.59 ± 0.16 rad.

The difference between the first sidelobe phases and the central
peak phase is −1.62 ± 0.06 rad, which is equal to −π/2 within the
errors, as expected from the FM theory. The minus sign indicates
that the line-of-sight crossing of the pulsating star occurs on the
far side of the orbit for the chosen time zero-point, t0. This phase
relationship demonstrates that the frequency triplet describes pure
frequency modulation, as expected for FM.

Shibahashi & Kurtz (2012) define a parameter α that measures
the amplitude of the phase modulation when the pulsation frequency
is treated as fixed (equation 4 therein). When α � 1, it is given by

α = A+1 + A−1

A0
, (3)

where A+1 and A−1 are the observed amplitudes of the first FM
sidelobes, and A0 is the observed amplitude of the central peak of
the FM multiplet. From Table 2, we then find for KIC 8569819
that α = 0.0444 ± 0.0017. From this amplitude ratio, the pulsation
period and the orbital period, the mass function can be derived:

f (m1,m2, sin i) ≡ (m2 sin i)3

(m1 + m2)2
= α3 P 3

osc

P 2
orb

c3

2πG
. (4)

Using the data in Table 2, we find f(m1, m2, sin i) = 0.141 ±
0.016 M�. Adopting a typical mass of m1 = 1.7 M� for the primary
and i ≈ 90◦, a secondary mass is m2 = 1 M�, hence the companion
to the δ Sct star is probably a solar-like main-sequence star.

We can also derive the semimajor axis of the primary star about
the barycentre. That is given by

a1 sin i = Posc

2π
αc, (5)

from which we find a1 sin i = 0.0772 ± 0.0030 au.
To derive the eccentricity of the system, we have fitted a frequency

quintuplet split by the orbital frequency about ν1 to the Q0–17 LC
data as shown in Table 2. While the second FM sidelobes in Fig. 3
are only marginally visible, the least-squares fit shows them to be
significant to 2.8σ and 4.4σ . The false alarm probability of finding
peaks of this significance at particular frequencies (i.e. the second
FM sidelobes) is F = exp ( − z) (Horne & Baliunas 1986), where z is
the power signal-to-noise ratio. Taking an average amplitude signal-
to-noise ratio of 3.6 for our second FM sidelobes gives z = 12.96
and F = 2.4 × 10−6. Hence, we can use the FM sidelobes to derive
the eccentricity:

e = 2(A+2 + A−2)

(A+1 + A−1)
= 0.39 ± 0.08, (6)

where A+2 and A−2 are the observed amplitudes of the second
FM sidelobes. While the phases of the second sidelobes contain
information about the argument of periastron, the errors are too
large to use them in this case.

3.2 Further FM of ν1: a cautionary tale

We now return to the peaks in the immediate vicinity of ν1 (cf.
bottom panel of Fig. 3, and the zoomed pre-whitened region in
Fig. 4). A multiplet of peaks and a doublet can be seen in the
amplitude spectrum after ν1 has been pre-whitened. The multiplet
on the right consists of several unresolved peaks that are likely
caused by a low amplitude (∼10 μmag) independent pulsation mode
that is amplitude-modulated on a time-scale longer than the 4-yr data

Figure 4. A zoomed-in region around ν1 after pre-whitening. The multiplet
of peaks to the right is most likely the result of a low, amplitude-independent
pulsation mode that is modulated on a time-scale longer than the data span,
since the sidelobes are not fully resolved. The other two central peaks are
equally spaced about ν1 and are caused by pure frequency modulation with
a period of 861 d.

set. This kind of amplitude modulation is commonly seen for δ Sct
stars in the Kepler data (see e.g. Bowman & Kurtz 2014), hence we
discuss these frequencies no further here.

On the other hand, the doublet seen in Fig. 4 is fully resolved
from ν1 and equally spaced on either side. By repeating the phase
relationship exercise done on the outer set of sidelobes, we find
that the peaks are caused by pure frequency modulation with a
modulation period of 861 d. It is tempting to conclude that these
peaks are the FM sidelobes caused by a third companion orbiting
the binary. Tables 3 and 4 show the fit of the inner sidelobes to ν1.
The modulation period is derived to be 861 ± 11 d. If we assumed
that this frequency modulation is caused by a third body, then from
the amplitudes of the orbital sidelobes given in Table 4 it would
follow that α = 0.0441 ± 0.0017, from equation (5) a sin i = 38
light-seconds, and from equation (4) the mass function is f(m1 + m2,
m3, sin i) = 0.000 119 ± 0.000 012 M�. Using the derived mass of
the binary, m1 + m2 = 2.7 M� and i ∼ 90◦, we would obtain a
tertiary mass of m3 = 0.098 ± 0.003 M�, i.e. a low-mass main-
sequence M dwarf star. We examine this proposition now, and show
it to be incorrect.

Many δ Sct stars show pulsation modes that are amplitude-
modulated, but modes can also be intrinsically frequency-modulated
(e.g. Breger 2000; Bowman & Kurtz 2014). Thus, another interpre-
tation of the close frequency sidelobes to ν1 is that they represent
intrinsic (i.e. non-dynamical) frequency modulation of that pulsa-
tion mode on a time-scale of 861 d. A test to discriminate between
intrinsic and dynamical frequency modulation is to look for the
sidelobes in several pulsation frequencies. In the case of dynamical
frequency modulation (third body), all pulsation frequencies must
show the same FM signature, akin to that in Fig. 3. In the case
of intrinsic frequency modulation, different frequencies will have
different sidelobes, corresponding to different pulsation cavities in
the star.

Unfortunately, all other p-mode amplitudes are at least a factor
of 4 or more smaller than the amplitude of ν1 (cf. Fig. 2), hence
we do not have sufficient signal in other frequencies to test for the
very low amplitudes of closely spaced FM sidelobes expected for an
861-d orbital period. While asteroseismology might not provide a
definitive answer, we do have another test: eclipse timing variations
(ETVs; Conroy et al. 2014). When a binary star is in a gravitationally
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Table 3. A non-linear least-squares fit of the highest amplitude frequency seen in Fig. 3 and
its first closely spaced FM sidelobes seen in Fig. 4 to the Q0–Q17 LC masked Kepler data for
KIC 8569819. The frequencies are separated by νmod = 0.001 161 ± 0.000 015 d−1, giving a
modulation period of 861 ± 11 d. The zero-point in time for the phase is BJD 245 5679.129 20.

Frequency Amplitude Phase
(d−1) (mmag) (rad)

ν1 − νmod 15.856 2606 ± 0.000 0216 0.089 ± 0.005 − 1.5634 ± 0.0570
ν1 15.857 4741 ± 0.000 0005 4.152 ± 0.005 0.0284 ± 0.0016
ν1 + νmod 15.858 5831 ± 0.000 0204 0.096 ± 0.005 − 1.2470 ± 0.0529

νmod1 0.001 214 ± 0.000 022
νmod2 0.001 109 ± 0.000 020
νmod1 − νmod2 0.000 06 ± 0.000 03
νmod ≡ 〈νmod1 , νmod2 〉 0.001 161 ± 0.000 015
Pmod (d) 861 ± 11

Table 4. A linear least-squares fit of the close frequency triplet
for the highest amplitude mode to the Q0–Q17 LC Kepler data
for KIC 8569819 with exactly equal splitting. The frequencies
of the triplet are separated by the modulation frequency, νmod =
0.001 157 ± 0.000 014 d−1 (Pmod = 861 ± 11 d). The zero-point
for the phases has been chosen to be a time when the phases of
the first sidelobes to the highest amplitude frequency are equal,
t0 = BJD 245 5347.567 63. It can be seen that the phases of the
first sidelobes differ from that of the phase of ν1 by −1.56 ± 0.03
rad, which is equal to −π/2, proving pure FM.

Frequency Amplitude Phase
(d−1) (mmag) (rad)

ν1 − νmod 15.856 313 0.088 ± 0.005 1.8345 ± 0.0560
ν1 15.857 474 4.149 ± 0.005 − 2.8897 ± 0.0012
ν1 + νmod 15.858 635 0.095 ± 0.005 1.8344 ± 0.0522

bound system with another body, its centre of mass will move around
the system’s barycenter. Because of the light time travel effect, the
time of eclipses depends on the binary star’s position on the outer
orbit. If a third body were present in the system, then the eclipsing
binary would be separated by a sin i = 38 light-seconds from the
barycenter, hence we would see a clear signal of that amplitude
in eclipse timings. We measure eclipse times by first finding a
polynomial chain that fits the entire phased light curve, and then
we fit the same chain to each successive eclipse, allowing for the
temporal shift. The best-attained precision of ETVs in Kepler data
is ∼6 s (Conroy et al. 2014), but this is heavily degraded in the
case of KIC 8569819 by intrinsic variability that causes variations
in eclipse shapes. Nevertheless, variations of a ∼76 s peak-to-peak
amplitude would be easily detected. Fig. 5 depicts the ETV curve
and no signal at or around 861 d is detected.

Another technique can independently verify the orbital period of
the binary, and evaluate the possibility of a third body in a wider
orbit: phase modulation (Murphy et al. 2014). The method involves
precise determination of the pulsation frequencies of the highest
amplitude peaks in the Fourier transform of the stellar light curve,
using a non-linear least-squares fit to the Q0–Q17 data with the
eclipses masked, and subsequent subdivision of the light curve into
smaller segments for analysis. The phase of each peak in each
segment is determined, and converted into a light arrival time delay
(‘time delay’, hereafter). The binary motion of the pulsating star
should cause an identical signature on each pulsation frequency,
with a period equal to the binary orbital period, and an amplitude
equal to the light travel time across the projected semimajor axis.
Details can be found in Murphy et al. (2014).

Figure 5. ETVs for KIC 8569819. Eclipse times are measured by fitting a
polynomial chain to the entire phased light curve, and using that function to
fit the time offset of each successive eclipse (Conroy et al. 2014). Primary
ETVs are depicted with open circles and secondary ETVs are depicted with
filled circles.

We chose a segment size of 5 d so that the A star–G star orbit
is well sampled, and we investigated the four highest peaks from
Fig. 2. The Fourier transform of the time delays of each peak is
shown in the upper panel of Fig. 6, where the agreement on the
known 20.85-d period of the A star–G star pair is good. The lower
panel of Fig. 6 is the Fourier transform of the weighted average time
delay – the mean time delay of the four individual peaks, weighted
by the phase uncertainties. This shows the orbital frequency of
0.048 d−1 (giving Porb = 20.85 ± 0.01 d), but also shows some
variability near 0.001 d−1. It can be seen in the upper panel that this
arises from non-equal contributions from the individual time delays.
This illustrates that the long-period variability is not of a binary
origin, else each pulsation frequency would respond identically, as
in the case for the 20.85-d orbit.

These lines of evidence lead us to conclude that the closely spaced
sidelobes to ν1 represent an intrinsic frequency modulation that is
not dynamical. The nature of frequency and amplitude modulation
in δ Sct stars is not well understood; this is a topic of current research
with the 4-yr Kepler data sets for thousands of δ Sct stars (Bowman
& Kurtz 2014). Importantly, any finding of frequency modulation of
pulsation frequencies in pulsating stars must be studied in multiple
frequencies for the same star to distinguish between intrinsic and
dynamical frequency modulation.
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Validation of the FM technique 1229

Figure 6. Top: the Fourier transform of the light arrival time delays for the four highest amplitude peaks from Fig. 2. Bottom: the average time delay, weighted
by the observed phase uncertainties. The time delays for each of these four peaks agree well on an orbital period of 20.85 ± 0.01 d, as indicated by the peak at
0.048 d−1 in the lower panel. However, the lower panel also shows some power at 0.001 d−1, originating from the four individual peaks in differing amounts,
implicating FM as the cause. Further discussion is provided in the text.

We should stress, however, that if the close sidelobes given in
Table 4 and shown in Fig. 4 had had amplitudes of only 0.020
mmag, which would be a 4σ signal, and if they had been dynamical,
then the mass function would have given a mass for the third body
of about 17 MJupiter. This shows that the FM technique is capable
of finding brown dwarfs and gas giant planets in long-period orbits
around δ Sct A stars. Other standard techniques cannot find such
objects. A-type stars are too bright for transit detections of small
companions; the pulsations mask shallow transits; and such stars
are too massive for ground-based radial velocity techniques. The
FM technique (Shibahashi & Kurtz 2012) and the PM technique
(Murphy et al. 2014) with δ Sct stars observed by Kepler have the
potential to explore this parameter space for exoplanets.

4 B I NA RY M O D E L L I N G

In this section, we present our modelling of the eclipsing binary light
curve. This was done independently of the FM analysis presented
in the last section, except for the use of the mass function. We do
not have a spectroscopic radial velocity curve for this star, hence
we use the photometric equivalent of a radial velocity curve, i.e. the
FM mass function.

4.1 Period analysis

We performed a period analysis on all the available Q0–17 LC
data using the computer package KEPHEM (Prša et al. 2011). KEPHEM

is an interactive graphical user interface package that incorporates

three methods of period analysis: Lomb-Scargle (Lomb 1976; Scar-
gle 1982), Analysis of Variance (Schwarzenberg-Czerny 1989) and
Box-fitting Least-Squares (Kovács, Zucker & Mazeh 2002), as im-
plemented in the VARTOOLS package (Hartman 1998). Using KEPHEM,
the period and BJD0 (the time of primary minimum) were found,
giving an ephemeris:

MinI = BJD 245 4970.56(1) + 20.849 93(3)d × E. (7)

As can be seen by comparing with the FM analysis in the last
section, the light curve fitting of the eclipses gives a more accurate
determination of the orbital period.

4.2 Determination of the eccentricity and argument of
periastron through binary star analysis

To demonstrate the validity of the FM method, we generated a bi-
nary model to determine the eccentricity and argument of periastron
of this system. In our model, we assumed the mass of the primary
star to be m1 = 1.7 M�, estimated from the primary star’s effec-
tive temperature. Consequently, from the mass function determined
through FM, we arrived at a mass for the secondary component of
m2 ∼ 1.0 M� (as the system is equator-on). While these assump-
tions disable the full determination of the binary star parameters,
they are adequate to solve robustly for the eccentricity and argument
of periastron to validate the FM method.

We applied the binary modelling code PHOEBE (Prša &
Zwitter 2005), which is an extension of the Wilson–Devinney code
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(Wilson & Devinney 1971; Wilson 1979),5 to the light curve of
KIC 8569819. PHOEBE combines the complete treatment of the Roche
potential with the detailed treatment of surface and horizon effects
such as limb darkening, reflection and gravity brightening to derive
an accurate model of the binary parameters. The current imple-
mentation uses the Wilson–Devinney method of summing over the
discrete rectangular surface elements, which cover the distorted
stellar surfaces, to determine an accurate representation of the total
observed flux and consequently a complete set of stellar and orbital
parameters. PHOEBE incorporates all the functionality of the Wilson–
Devinney code, but also provides an intuitive graphical user inter-
face alongside many other improvements, including updated filters
and bindings that enable interfacing between PHOEBE and PYTHON

(see Section 4.2.1 below).
The data were detrended using second-order polynomials that

were applied between breaks in the Kepler data, using the KEPHEM

software. We further cleaned the data by removing all spurious
points by eye. To reduce the number of data points, for the purpose
of modelling, we assigned each data point with a random number
from 0 to 1, and removed all points with random numbers above a
specified threshold – 0.5 during the eclipse phases and 0.01 away
from eclipse. This way we retained 50 per cent of the data points
during eclipse and 1 per cent of the points away from eclipse. We
used a sigmoid function to bridge the number of data points between
regions so that discrete changes in the number of data points were
avoided. The number of data points was reduced from 60 554 to
4390. The per-point uncertainty was determined using the standard
deviation of the residuals (data minus model) in the out-of-eclipse
regions.

Our initial binary model inputs consisted of the effective temper-
ature from the KIC, which we prescribed for the temperature of the
primary component (Teff = 7100 K); an estimate of the secondary
component’s temperature (Teff ∼ 6100 K) from consideration of the
depths of the eclipses; and the surface gravity value from the KIC
log g = 4.0 (cgs units). As the eclipses are separated by ∼0.5 in
phase, we initially assumed an eccentricity of e = 0.0. However,
analysis of the relative widths of the eclipses showed that the ec-
centricity is closer to e = 0.4, with an argument of periastron of
ω ≈ 3π/2 implying that we are looking down the line of apsides.

We assumed pseudo-synchronous rotation, which is stellar rota-
tion synchronous with the orbital velocity at periastron (Hut 1981),
and determined the rotation of the components to be F = 2.715
rotations per orbit. We assessed the impact of the stellar rotation on
the light curve and found an adjustment from F = 1.0 to F = 5.0
generates a model difference of 0.05 per cent, which is insignifi-
cant. As the Lomb-Scargle method is more accurate than PHOEBE for
ephemeris determination, the period and zero-point in time were
fixed to the values determined using KEPHEM.

When considering the stellar surfaces, we assumed that the pri-
mary component has a radiative surface, thus an albedo of A = 1.0,
and a gravity-darkening exponent, β, of β = 1.0 (von Zeipel 1924).
For the secondary component, we assigned the value of A = 0.6 for
the albedo and β = 0.32 for the gravity-darkening exponent (Lucy
1967). Recent updates in the theory of gravity darkening suggest
that this value is dependent on temperature (Claret & Bloemen
2011) and/or level of stellar distortion (Espinosa Lara & Rieutord
2012). However, for this system, the gravity-darkening value has a
negligible effect (0.03 per cent model difference from β = 0 to 1,
hence the value prescribed by Lucy 1967 was deemed acceptable).

5 A manual for the Wilson-Devinney code is available on-line ftp://ftp.
astro.ufl.edu/pub/wilson/

Table 5. Adjusted parameters and coefficients of the best-fitting
model to the Kepler light curve for Q0–17. The uncertainties were
determined through MCMC methods. The linear and logarithmic
limb darkening coefficients are the terms that describe the limb dark-
ening of each component. The limb-darkening coefficients were
taken from the PHOEBE limb-darkening tables (Prša et al. 2011).

Parameter Values

Phase shift, φ 0.001 515(9)
Orbital eccentricity, e 0.366(1)
Argument of periastron (rad), ω 4.722 31(8)
Orbital inclination (degrees), i 89.91(6)
Teff ratio (K), T2/T1 0.8517(5)
Primary relative luminosity, L1 0.873(4)
Secondary relative luminosity, L2 0.1275(6)
Primary linear limb-darkening coefficient 0.6169
Secondary linear limb-darkening coefficient 0.6382
Primary logarithmic limb-darkening coefficient 0.2495
Secondary logarithmic limb-darkening coefficient 0.2002

Table 5 provides a complete list of the fixed parameters and their
assumed values.

4.2.1 Posterior determination of the orbital parameters

To determine the posterior probability distribution functions of the
binary parameters (cf. Fig. 7), we combined PHOEBE with the EMCEE,
a PYTHON implementation of the affine invariant ensemble sampler
for Markov chain Monte Carlo (MCMC) proposed by Goodman &
Weare (2010) and written by Foreman-Mackey et al. (2013).

MCMC explores the binary parameter space using a set of
Markov chains, in this case 128. These chains begin with random
distributions based only on the prior probability distribution func-
tions and the initial model. They move through parameter space
by assessing their posterior probability distribution function at each
point and then selecting a new position based on the position of
another chain. The step size is based on the covariance of the two
chains. If the move increases the posterior probability distribution
function then it is accepted, if the move decreases the probabil-
ity then it may be accepted (to fully explore the phase space).
During the initial burn-in time, the Markov chains merge towards
their equilibrium position. After this period, the chains sample the
phase space in terms of their posterior probability distribution func-
tions. The statistics of a large number of iterations (∼150 000 ex-
cluding the burn-in time), provide probability distributions for the
model parameters.

We sampled seven parameters in our multidimensional parame-
ter space, based on their contribution to the observed flux variation
of this system. As only the ratio of the temperatures can be deter-
mined from light-curve analysis, the effective temperature of the
secondary was sampled, whilst keeping the primary temperature
fixed. We selected the secondary temperature, since the KIC tem-
perature provides a constraint for the primary effective temperature.
The inclination, eccentricity, argument of periastron, primary and
secondary potentials (potentials of the Roche lobe – a proxy for
the inverse radius) and luminosity were also sampled using MCMC
methods. At each iteration, we calculated the phase shift using the
new values of eccentricity and argument of periastron. All other
parameters in our models were either well determined (period and
zero-point in time), theoretically determined (albedo and gravity
darkening) or insignificant for this system (stellar rotational veloc-
ity and gravity darkening).
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Figure 7. Lower-left subplots: two-dimensional cross-sections of the posterior probability distribution functions. The crosses show the 1σ (red) and 2σ

(green) uncertainties, and are centred on the minima. Diagonal subplots from top left to bottom right: histograms displaying the probability distribution of each
individual parameter. Upper-right subplots: the correlations for the two-dimensional cross-sections mirrored in the diagonal line where 1 is direct correlation
and −1 is a direct anticorrelation. The values above the plot give the mean value and 1σ uncertainty for each parameter, based on the fitted Gaussians.

For each parameter, we used a flat, uniform prior. The prior ranges
were selected to be as large as possible without creating unphysical
models. We restricted the prior on the inclination to be contained
below 90◦ to avoid obtaining a double-peaked distribution reflected
about 90◦. The likelihood function was generated by computing the
χ2 difference between the initial model and data. Fig. 8 shows the
average of the last 1024 models generated using MCMC (eight from
each Markov chain). The thickness of the line denotes the spread
of the last 1024 models. The lower panel shows the residuals to the
best-fitting model. Error bars on the residuals show the per-point
standard deviation for the last 1024 models.

The posteriors generated through MCMC are well determined,
thus the model is well constrained. For all parameters except the
inclination, the Gaussian fit to each posterior, shown in Fig. 7,
is excellent and provides a robust error estimate. The inclination,
however, presents an apparent multimodal distribution, which is a
consequence of a small star passing over a large disc. Here, the
information regarding the points of ingress and egress is limited,
yet constrained to a very small range of inclinations. To account for
the inexact fit of the Gaussian, we have increased the uncertainty of
the inclination from that determined through Gaussian fitting, 0.◦04
to 0.◦06.
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Figure 8. Upper panel: theoretical PHOEBE model (red line) and observed light curve (black points), prepared as specified in Section 4.2. The width of the
line depicts the spread of the final 1048 models determined using MCMC. Lower panel: the residuals (black points) of the best-fitting model. The per-point
uncertainty in the model is displayed as error bars.

Table 6. Fixed parameters and coefficients for the
PHOEBE best-fitting model to the Kepler light curve for
Q0–17. The rotation is specified as a ratio of the stel-
lar rotational to orbital velocity. The mass ratio and
semimajor axis were fixed to generate a model with a
primary mass of m1 = 1.7 M� and a secondary mass
of m2 = 1.0 M�, in line with the mass function de-
termined through the FM method. The fine grid raster
is the number of surface elements per quarter of the
star at the equator and coarse grid raster is used to
determine whether the stars are eclipsing at a given
phase.

Parameter Values

Orbital Period (d) 20.849 93(3)
Time of primary minimum BJD0 2454 970.56(1)
Primary Teff (K), T1 7100(250)
Mass ratio, q 0.588
Semimajor axis (R�), a 44.6
Third light, l3 0.0
Primary rotation, f1 2.715
Secondary rotation, f2 2.715
Primary bolometric albedo, A1 1.0
Secondary bolometric albedo, A2 0.6
Primary gravity brightening, β1 1.0
Secondary gravity brightening, β2 0.32
Primary fine grid raster 90
Secondary fine grid raster 90
Primary coarse grid raster 60
Secondary coarse grid raster 60

The stellar potentials and radii are highly dependent on the mass
ratio, and thus by assuming the masses we were unable to obtain
accurate values. To determine the extent of our assumptions, we
perturbed the mass ratio by 10 per cent and assessed the impact this
had on the model. When both increasing and decreasing the mass
ratio by 10 per cent (whilst calculating the potentials to keep the

Table 7. Comparison of results from traditional eclipsing binary star light-
curve modelling and the FM technique. The agreement validates the FM
method for those who are more accustomed to traditional eclipsing binary
light-curve modelling.

PHOEBE FM

Orbital period (d) 20.849 93 ± 0.000 03 20.849 ± 0.006
Eccentricity 0.366 ± 0.001 0.39 ± 0.08
Argument of periastron (rad) 4.722 31 ± 0.000 08 4.59 ± 0.16

radii fixed), we found a model difference of 0.6 per cent. As the
noise in our data is ∼2 per cent, this difference is not significant.
Thus, we find that the values reported in Table 6 are independent of
assumption that the mass ratio is q = 0.588.

5 C O N C L U S I O N S

We have demonstrated the validity of the FM technique (Shiba-
hashi & Kurtz 2012) by showing the consistent results obtained
from it when compared to a traditional eclipsing binary light-curve
analysis. We derived the mass function from the FM technique of
Shibahashi & Kurtz (2012). That additional constraint was then used
in the light-curve modelling by traditional methods. The orbital pe-
riod, eccentricity and argument of periastron derived independently
from both the FM method and light-curve modelling are in good
agreement, as is shown in Table 7. This was the primary goal of
this paper for readers who are familiar with traditional binary star
light-curve modelling, but not yet with the FM technique.

While light-curve modelling produces higher accuracy for orbital
period and eccentricity in the case of KIC 8569819, that is only
true for EB stars. For non-eclipsing systems, the FM technique is
still applicable, whereas traditional techniques work less well for
ellipsoidal variables, and not at all for non-distorted, longer orbital
period systems. We also have presented a cautionary note in the use
of FM in the discovery of additional pure FM in KIC 8569819 that is
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not the result of orbital motion, but is intrinsic to the pulsation cavity
of the highest amplitude mode in the star. Thus, our message is that
FM is a powerful technique, but at least two pulsation frequencies
in a star must give consistent results to conclude a dynamical origin
of the FM.
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