3,498 research outputs found
A time-dependent approach to electron pumping in open quantum systems
We propose a time-dependent approach to investigate the motion of electrons
in quantum pump device configurations. The occupied one-particle states are
propagated in real time and used to calculate the local electron density and
current. An advantage of the present computational scheme is that the same
computational effort is required to simulate monochromatic, polychromatic and
nonperiodic drivings. Furthermore, initial state dependence and history effects
are naturally accounted for. This approach can also be embedded in the
framework of time-dependent density functional theory to include
electron-electron interactions. In the special case of periodic drivings we
combine the Floquet theory with nonequilibrium Green's functions and obtain a
general expression for the pumped current in terms of inelastic transmission
probabilities. This latter result is used for benchmarking our propagation
scheme in the long-time limit. Finally, we discuss the limitations of
Floquet-based schemes and suggest our approach as a possible way to go beyond
them.Comment: 14 pages, 8 figure
Doping and critical-temperature dependence of the energy gaps in Ba(Fe_{1-x}Co_x)_2As_2 thin films
The dependence of the superconducting gaps in epitaxial
Ba(Fe_{1-x}Co_{x})_2As_2 thin films on the nominal doping x (0.04 \leq x \leq
0.15) was studied by means of point-contact Andreev-reflection spectroscopy.
The normalized conductance curves were well fitted by using the 2D
Blonder-Tinkham-Klapwijk model with two nodeless, isotropic gaps -- although
the possible presence of gap anisotropies cannot be completely excluded. The
amplitudes of the two gaps \Delta_{S} and \Delta_{L} show similar monotonic
trends as a function of the local critical temperature T_{c}^{A} (measured in
the same point contacts) from 25 K down to 8 K. The dependence of the gaps on x
is well correlated to the trend of the critical temperature, i.e. to the shape
of the superconducting region in the phase diagram. When analyzed within a
simple three-band Eliashberg model, this trend turns out to be compatible with
a mechanism of superconducting coupling mediated by spin fluctuations, whose
characteristic energy scales with T_{c} according to the empirical law
\Omega_{0}= 4.65*k_{B}*T_{c}, and with a total electron-boson coupling strength
\lambda_{tot}= 2.22 for x \leq 0.10 (i.e. up to optimal doping) that slightly
decreases to \lambda_{tot}= 1.82 in the overdoped samples (x = 0.15).Comment: 8 pages, 5 color figure
Effects of chemical releases by the STS-3 Orbiter on the ionosphere
The Plasma Diagnostics Package, flown aboard STS-3 as part of the first Shuttle payload (OSS-1), recorded the effects of various chemical releases from the Orbiter. Changes in the plasma environment was observed during flash evaporator system releases, water dumps and maneuvering thruster operations. During flash evaporator operations, broadband Orbiter-generated electrostatic noise was enhanced and plasma density irregularities were observed to increase by 3 to 30 times with a spectrum which rose steeply and peaked below 6 Hz. In the case of water dumps, background electrostatic noise was enhanced at frequencies below about 3 kHz and suppressed at frequencies above 2 kHz. Thruster activity also stimulated electrostatic noise with a spectrum which peaked at approximately 0.5 kHz. In addition, ions with energies up to 1 keV were seen during some thruster events
Resistivity in Co-doped Ba-122: comparison of thin films and single crystals
The temperature dependence of the resistivity of epitaxial
Ba(Fe_(1-x)Co_x)2As2 thin films (with nominal doping x = 0.08, 0.10 and 0.15)
has been analyzed and compared with analogous measurements on single crystals
taken from literature. The rho(T) of thin films looks different from that of
single crystals, even when the cobalt content is the same. All rho(T) curves
can be fitted by considering an effective two-band model (with holes and
electrons bands) in which the electrons are more strongly coupled with the
bosons (spin fluctuations) than holes, while the effect of impurities is mainly
concentrated in the hole band. Within this model the mediating boson has the
same characteristic energy in single crystals and thin films, but the shape of
the transport spectral function at low energy has to be very different, leading
to a "hardening" of the electron-boson spectral function in thin films,
associated with the strain induced by the substrate.Comment: 13 pages, 4 figure
Oscillations of dark solitons in trapped Bose-Einstein condensates
We consider a one-dimensional defocusing Gross--Pitaevskii equation with a
parabolic potential. Dark solitons oscillate near the center of the potential
trap and their amplitude decays due to radiative losses (sound emission). We
develop a systematic asymptotic multi-scale expansion method in the limit when
the potential trap is flat. The first-order approximation predicts a uniform
frequency of oscillations for the dark soliton of arbitrary amplitude. The
second-order approximation predicts the nonlinear growth rate of the
oscillation amplitude, which results in decay of the dark soliton. The results
are compared with the previous publications and numerical computations.Comment: 13 pages, 3 figure
Chiral behavior of pseudo-Goldstone boson masses and decay constants in 2+1 flavor QCD
We present preliminary results for the chiral behavior of charged
pseudo-Goldstone-boson masses and decay constants. These are obtained in
simulations with N_f=2+1 flavors of tree-level, O(a)-improved Wilson sea
quarks. In these simulations, mesons are composed of either valence quarks
discretized in the same way as the sea quarks (unitary simulations) or of
overlap valence quarks (mixed-action simulations). We find that the chiral
behavior of the pseudoscalar meson masses in the mixed-action calculations
cannot be explained with continuum, partially-quenched chiral perturbation
theory. We show that the inclusion of O(a^2) unitarity violations in the chiral
expansion resolves this discrepancy and that the size of the unitarity
violations required are consistent with those which we observe in the
zero-momentum, scalar-isotriplet-meson propagator.Comment: 7 pages, 3 figures, talk by L. Lellouch at the XXV International
Symposium on Lattice Field Theory (LATTICE 2007), 30 July - 4 August 2007,
Regensburg, German
Quantifying the relative contributions of substorm injections and chorus waves to the rapid outward extension of electron radiation belt
Abstract We study the rapid outward extension of the electron radiation belt on a timescale of several hours during three events observed by Radiation Belt Storm Probes and Time History of Events and Macroscale Interactions during Substorms satellites and particularly quantify the contributions of substorm injections and chorus waves to the electron flux enhancement near the outer boundary of radiation belt. A comprehensive analysis including both observations and simulations is performed for the first event on 26 May 2013. The outer boundary of electron radiation belt moved from L = 5.5 to L \u3e 6.07 over about 6 h, with up to 4 orders of magnitude enhancement in the 30 keV to 5 MeV electron fluxes at L = 6. The observations show that the substorm injection can cause 100% and 20% of the total subrelativistic (∼0.1 MeV) and relativistic (2-5 MeV) electron flux enhancements within a few minutes. The data-driven simulation supports that the strong chorus waves can yield 60%-80% of the total energetic (0.2-5.0 MeV) electron flux enhancement within about 6 h. Some simple analyses are further given for the other two events on 2 and 29 June 2013, in which the contributions of substorm injections and chorus waves are shown to be qualitatively comparable to those for the first event. These results clearly illustrate the respective importance of substorm injections and chorus waves for the evolution of radiation belt electrons at different energies on a relatively short timescale. Key Points Rapid outward extension of electron radiation belt observed by RBSP and THEMIS A two-step scenario to explain the rapid flux enchantment Differentiating between contributions of substorm injections and chorus waves
Spectra of heavy-light and heavy-heavy mesons containing charm quarks, including higher spin states for
We study the spectra of heavy-light and heavy-heavy mesons containing charm
quarks, including higher spin states. We use two sets of gauge
configurations, one set from QCDSF using the SLiNC action, and the other
configurations from the Budapest-Marseille-Wuppertal collaboration, using the
HEX smeared clover action. To extract information about the excited states, we
choose a suitable basis of operators to implement the variational method.Comment: 7 pages, 5 figures, Talk presented at the XXIX International
Symposium on Lattice Field Theory, Lattice2011, July 11-16, 2011, The Village
at Squaw Valley, California, US
Modeling inward diffusion and slow decay of energetic electrons in the Earth\u27s outer radiation belt
Abstract
A new 3-D diffusion code is used to investigate the inward intrusion and slow decay of energetic radiation belt electrons (\u3e0.5 MeV) observed by the Van Allen Probes during a 10 day quiet period on March 2013. During the inward transport, the peak differential electron fluxes decreased by approximately an order of magnitude at various energies. Our 3-D radiation belt simulation including radial diffusion and pitch angle and energy diffusion by plasmaspheric hiss and electromagnetic ion cyclotron (EMIC) waves reproduces the essential features of the observed electron flux evolution. The decay time scales and the pitch angle distributions in our simulation are consistent with the Van Allen Probe observations over multiple energy channels. Our study suggests that the quiet time energetic electron dynamics are effectively controlled by inward radial diffusion and pitch angle scattering due to a combination of plasmaspheric hiss and EMIC waves in the Earth\u27s radiation belts
- …