822 research outputs found

    Acyl-Homoserine Lactones Can Induce Virus Production in Lysogenic Bacteria: an Alternative Paradigm for Prophage Induction

    Get PDF
    Prophage typically are induced to a lytic cycle under stressful environmental conditions or when the host\u27s survival is threatened. However, stress-independent, spontaneous induction also occurs in nature and may be cell density dependent, but the in vivo signal(s) that can trigger induction is unknown. In the present study, we report that acyl-homoserine lactones (AHL), the essential signaling molecules of quorum sensing in many gram-negative bacteria, can trigger phage production in soil and groundwater bacteria. This phenomenon also was operative in a lambda lysogen of Escherichia coli. In model coculture systems, we monitored the real-time AHL production from Pseudomonas aeruginosa PAO1 using an AHL bioluminescent sensor and demonstrated that lambda-prophage induction in E. coli was correlated with AHL production. As a working model in E. coli, we show that the induction responses of lambda with AHL remained unaffected when recA was deleted, suggesting that this mechanism does not involve an SOS response. In the same lambda lysogen we also demonstrated that sdiA, the AHL receptor, and rcsA, a positive transcriptional regulator of exopolysaccharide synthesis, are involved in the AHL-mediated induction process. These findings relate viral reproduction to chemical signals associated with high host cell abundance, suggesting an alternative paradigm for prophage induction

    Stormwater runoff drives viral changes in inland freshwaters community composition

    Get PDF
    Storm events impact freshwater microbial communities by transporting terrestrial viruses and other microbes to freshwater systems, and by potentially resuspending microbes from bottom sediments. The magnitude of these impacts on freshwater ecosystems is unknown and largely unexplored. Field studies carried out at two discrete sites in coastal Virginia (USA) were used to characterize the viral load carried by runoff and to test the hypothesis that terrestrial viruses introduced through stormwater runoff change the composition of freshwater microbial communities. Field data gathered from an agricultural watershed indicated that primary runoff can contain viral densities approximating those of receiving waters. Furthermore, viruses attached to suspended colloids made up a large fraction of the total load, particularly in early stages of the storm. At a second field site (stormwater retention pond), RAPD-PCR profiling showed that the viral community of the pond changed dramatically over the course of two intense storms while relatively little change was observed over similar time scales in the absence of disturbance. Comparisons of planktonic and particle-associated viral communities revealed two completely distinct communities, suggesting that particle-associated viruses represent a potentially large and overlooked portion of aquatic viral abundance and diversity. Our findings show that stormwater runoff can quickly change the composition of freshwater microbial communities. Based on these findings, increased storms in the coastal mid-Atlantic region predicted by most climate change models will likely have important impacts on the structure and function of local freshwater microbial communities

    Expanding the Diversity of Mycobacteriophages: Insights into Genome Architecture and Evolution

    Get PDF
    Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists

    Continuous Quinacrine Treatment Results in the Formation of Drug-Resistant Prions

    Get PDF
    Quinacrine is a potent antiprion compound in cell culture models of prion disease but has failed to show efficacy in animal bioassays and human clinical trials. Previous studies demonstrated that quinacrine inefficiently penetrates the blood-brain barrier (BBB), which could contribute to its lack of efficacy in vivo. As quinacrine is known to be a substrate for P-glycoprotein multi-drug resistance (MDR) transporters, we circumvented its poor BBB permeability by utilizing MDR0/0 mice that are deficient in mdr1a and mdr1b genes. Mice treated with 40 mg/kg/day of quinacrine accumulated up to 100 µM of quinacrine in their brains without acute toxicity. PrPSc levels in the brains of prion-inoculated MDR0/0 mice diminished upon the initiation of quinacrine treatment. However, this reduction was transient and PrPSc levels recovered despite the continuous administration of quinacrine. Treatment with quinacrine did not prolong the survival times of prion-inoculated, wild-type or MDR0/0 mice compared to untreated mice. A similar phenomenon was observed in cultured differentiated prion-infected neuroblastoma cells: PrPSc levels initially decreased after quinacrine treatment then rapidly recovered after 3 d of continuous treatment. Biochemical characterization of PrPSc that persisted in the brains of quinacrine-treated mice had a lower conformational stability and different immunoaffinities compared to that found in the brains of untreated controls. These physical properties were not maintained upon passage in MDR0/0 mice. From these data, we propose that quinacrine eliminates a specific subset of PrPSc conformers, resulting in the survival of drug-resistant prion conformations. Transient accumulation of this drug-resistant prion population provides a possible explanation for the lack of in vivo efficacy of quinacrine and other antiprion drugs

    Cluster K Mycobacteriophages: Insights into the Evolutionary Origins of Mycobacteriophage TM4

    Get PDF
    Five newly isolated mycobacteriophages –Angelica, CrimD, Adephagia, Anaya, and Pixie – have similar genomic architectures to mycobacteriophage TM4, a previously characterized phage that is widely used in mycobacterial genetics. The nucleotide sequence similarities warrant grouping these into Cluster K, with subdivision into three subclusters: K1, K2, and K3. Although the overall genome architectures of these phages are similar, TM4 appears to have lost at least two segments of its genome, a central region containing the integration apparatus, and a segment at the right end. This suggests that TM4 is a recent derivative of a temperate parent, resolving a long-standing conundrum about its biology, in that it was reportedly recovered from a lysogenic strain of Mycobacterium avium, but it is not capable of forming lysogens in any mycobacterial host. Like TM4, all of the Cluster K phages infect both fast- and slow-growing mycobacteria, and all of them – with the exception of TM4 – form stable lysogens in both Mycobacterium smegmatis and Mycobacterium tuberculosis; immunity assays show that all five of these phages share the same immune specificity. TM4 infects these lysogens suggesting that it was either derived from a heteroimmune temperate parent or that it has acquired a virulent phenotype. We have also characterized a widely-used conditionally replicating derivative of TM4 and identified mutations conferring the temperature-sensitive phenotype. All of the Cluster K phages contain a series of well conserved 13 bp repeats associated with the translation initiation sites of a subset of the genes; approximately one half of these contain an additional sequence feature composed of imperfectly conserved 17 bp inverted repeats separated by a variable spacer. The K1 phages integrate into the host tmRNA and the Cluster K phages represent potential new tools for the genetics of M. tuberculosis and related species

    Study protocol: developing, disseminating, and implementing a core outcome set for selective fetal growth restriction in monochorionic twin pregnancies.

    Get PDF
    BACKGROUND: Selective fetal growth restriction in monochorionic twin pregnancies is associated with an increased risk of perinatal mortality and morbidity and represents a clinical dilemma. Interventions include expectant management with early preterm delivery if there are signs of fetal compromise, selective termination of the compromised twin, fetoscopic laser coagulation of the communicating placental vessels or termination of the whole pregnancy. Previous studies evaluating interventions have reported many different outcomes and outcome measures. Such variation makes comparing, contrasting, and combining results challenging, limiting ongoing research on this uncommon condition to inform clinical practice. We aim to produce, disseminate, and implement a core outcome set for selective fetal growth restriction research in monochorionic twin pregnancies. METHODS: An international steering group, including professionals, researchers, and lay experts, has been established to oversee the development of this core outcome set. The methods have been guided by the Core Outcome Measures in Effectiveness Trials Initiative Handbook. Potential core outcomes will be developed by undertaking a systematic review of studies evaluating interventions for selective fetal growth restriction in monochorionic twin pregnancies. Potential core outcomes will be entered into a three-round Delphi survey and key stakeholders including clinical professionals, researchers, and lay experts will be invited to participate. Repeated reflection and rescoring of individual outcomes should encourage group and individual stakeholder convergence towards consensus outcomes which will be entered into a modified Nominal Group Technique to finalize the core outcome set. Once core outcomes have been agreed, we will establish standardized definitions and recommend high-quality measurement instruments for each outcome. DISCUSSION: The development, dissemination, and implementation of a core outcome set for selective fetal growth restriction should ensure that future research protocols select, collect, and report outcomes and outcome measures in a standardized manner. Data synthesis will be possible on a broad level and rigorous implementation should advance the quality of research studies and their effective use in order to guide clinical practice, improve patient care, maternal, short-term perinatal outcomes, and long-term neurodevelopmental outcomes. TRIAL REGISTRATION: Core Outcome Measures in Effectiveness Trials (COMET) registration number: 998. International Prospective Register of Systematic Reviews (PROSPERO) registration number: CRD42018092697 . 18th April 2018

    Protease-Resistant Prions Selectively Decrease Shadoo Protein

    Get PDF
    The central event in prion diseases is the conformational conversion of the cellular prion protein (PrPC) into PrPSc, a partially protease-resistant and infectious conformer. However, the mechanism by which PrPSc causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrPC, were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrPSc in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrPSc. Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrPSc. Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrPSc during prion disease

    Genome-Wide Association Study and Functional Characterization Identifies Candidate Genes for Insulin-Stimulated Glucose Uptake

    Get PDF
    Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in \u3e55,000 participants from three ancestry groups. We identified ten new loci (P \u3c 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits
    • …
    corecore