2,199 research outputs found

    Entropic Inequalities for a Class of Quantum Secret Sharing States

    Full text link
    It is well-known that von Neumann entropy is nonmonotonic unlike Shannon entropy (which is monotonically nondecreasing). Consequently, it is difficult to relate the entropies of the subsystems of a given quantum state. In this paper, we show that if we consider quantum secret sharing states arising from a class of monotone span programs, then we can partially recover the monotonicity of entropy for the so-called unauthorized sets. Furthermore, we can show for these quantum states the entropy of the authorized sets is monotonically nonincreasing.Comment: LaTex, 5 page

    Accretion dynamics in the classical T Tauri star V2129 Oph

    Full text link
    We analyze the photometric and spectroscopic variability of the classical T Tauri star V2129 Oph over several rotational cycles to test the dynamical predictions of magnetospheric accretion models. The photometric variability and the radial velocity variations in the photospheric lines can be explained by rotational modulation due to cold spots, while the radial velocity variations of the He I (5876 \AA) line and the veiling variability are due to hot spot rotational modulation. The hot and cold spots are located at high latitudes and about the same phase, but the hot spot is expected to sit at the chromospheric level, while the cold spot is at the photospheric level. Using the dipole+octupole magnetic-field configuration previously proposed in the literature for the system, we compute 3D MHD magnetospheric simulations of the star-disk system. We use the simulation's density, velocity and scaled temperature structures as input to a radiative transfer code, from which we calculate theoretical line profiles at all rotational phases. The theoretical profiles tend to be narrower than the observed ones, but the qualitative behavior and the observed rotational modulation of the H\alpha and H\beta emission lines are well reproduced by the theoretical profiles. The spectroscopic and photometric variability observed in V2129 Oph support the general predictions of complex magnetospheric accretion models with non-axisymmetric, multipolar fields.Comment: Accepted by Astronomy and Astrophysic

    Emission-line profile modelling of structured T Tauri magnetospheres

    Full text link
    We present hydrogen emission line profile models of magnetospheric accretion onto Classical T Tauri stars. The models are computed under the Sobolev approximation using the three-dimensional Monte Carlo radiative-transfer code TORUS. We have calculated four illustrative models in which the accretion flows are confined to azimuthal curtains - a geometry predicted by magneto-hydrodynamical simulations. Properties of the line profile variability of our models are discussed, with reference to dynamic spectra and cross-correlation images. We find that some gross characteristics of observed line profile variability are reproduced by our models, although in general the level of variability predicted is larger than that observed. We conclude that this excessive variability probably excludes dynamical simulations that predict accretion flows with low degrees of axisymmetry.Comment: 14 pages, 12 figures. Published in MNRA

    T Tauri stellar magnetic fields: He I measurements

    Full text link
    We present measurements of the longitudinal magnetic field in the circumstellar environment of seven classical T Tauri stars. The measurements are based on high-resolution circular spectropolarimetry of the He I 5876 emission line, which is thought to form in accretion streams controlled by a stellar magnetosphere. We detect magnetic fields in BP Tau, DF Tau and DN Tau, and detect statistically significant fields in GM Aur and RW Aur A at one epoch but not at others. We detect no field for DG Tau and GG Tau, with the caveat that these objects were observed at one epoch only. Our measurements for BP Tau and DF Tau are consistent, both in terms of sign and magnitude, with previous studies, suggesting that the characteristics of T Tauri magnetospheres are persistent over several years. We observed the magnetic field of BP Tau to decline monotonically over three nights, and have detected a peak field of 4kG in this object, the highest magnetic field yet observed in a T Tauri star. We combine our observations with results from the literature in order to perform a statistical analysis of the magnetospheric fields in BP Tau and DF Tau. Assuming a dipolar field, we determine a polar field of ~3kG and a dipole offset of 40deg for BP Tau, while DF Tau's field is consistent with a polar field of ~-4.5kG and a dipole offset of 10deg. We conclude that many classical T Tauri stars have circumstellar magnetic fields that are both strong enough and sufficiently globally-ordered to sustain large-scale magnetospheric accretion flows.Comment: 8 pages, 3 figures. Accepted by MNRAS. Corrected typo

    Chiral charge-density-waves

    Get PDF
    We discovered the chirality of charge density waves (CDW) in 1T-TiSe2_2 by using scanning tunnelling microscopy (STM) and optical ellipsometry. We found that the CDW intensity becomes Ia1:Ia2:Ia3=1:0.7±0.1:0.5±0.1I{a_1}:I{a_2}:I{a_3} = 1:0.7 \pm 0.1:0.5 \pm 0.1, where IaiIa_i (i =1, 2, 3) is the amplitude of the tunnelling current contributed by the CDWs. There were two states, in which the three intensity peaks of the CDW decrease \textit{clockwise} and \textit{anticlockwise} when we index each nesting vector in order of intensity in the Fourier transformation of the STM images. The chirality in CDW results in the three-fold symmetry breaking. Macroscopically, two-fold symmetry was indeed observed in optical measurement. We propose the new generalized CDW chirality H_{CDW} \equiv {\boldmath q_1} \cdot ({\boldmath q_2}\times {\boldmath q_3}), where {\boldmath q_i} are the nesting vectors, which is independent of the symmetry of components. The nonzero HCDWH_{CDW} - the triple-{\boldmath q} vectors do not exist in an identical plane in the reciprocal space - should induce a real-space chirality in CDW system.Comment: 12 pages, 4 figure

    Development of microwave diagnostic simulator

    Get PDF
    Two-dimensional simulator models are presented for microwave diagnostics. The models assume the Maxwell wave equation coupled with the equation of plasma current density in a cold magnetized plasma, which can describe propagation, reflection, and cross polarization scattering of the ordinary and extraordinary modes. The effects of waveguide for the microwave launcher and wall boundary of the vacuum vessel are included in the models. The simulations of ultrashort-pulse reflectometry with the use of incident subcyclic ordinary modes in the models are performed to test the problem of density profile reconstruction
    corecore