136 research outputs found

    The low-order wavefront sensor for the PICTURE-C mission

    Get PDF
    The PICTURE-C mission will fly a 60 cm off-axis unobscured telescope and two high-contrast coronagraphs in successive high-altitude balloon flights with the goal of directly imaging and spectrally characterizing visible scattered light from exozodiacal dust in the interior 1-10 AU of nearby exoplanetary systems. The first flight in 2017 will use a 10[superscript -4] visible nulling coronagraph (previously flown on the PICTURE sounding rocket) and the second flight in 2019 will use a 10[superscript -7] vector vortex coronagraph. A low-order wavefront corrector (LOWC) will be used in both flights to remove time-varying aberrations from the coronagraph wavefront. The LOWC actuator is a 76-channel high-stroke deformable mirror packaged on top of a tip-tilt stage. This paper will detail the selection of a complementary high-speed, low-order wavefront sensor (LOWFS) for the mission. The relative performance and feasibility of several LOWFS designs will be compared including the Shack-Hartmann, Lyot LOWFS, and the curvature sensor. To test the different sensors, a model of the time-varying wavefront is constructed using measured pointing data and inertial dynamics models to simulate optical alignment perturbations and surface deformation in the balloon environment.United States. National Aeronautics and Space Administration (Grant NNX15AG23G S01

    The low-order wavefront sensor for the PICTURE-C mission

    Get PDF
    The PICTURE-C mission will fly a 60 cm off-axis unobscured telescope and two high-contrast coronagraphs in successive high-altitude balloon flights with the goal of directly imaging and spectrally characterizing visible scattered light from exozodiacal dust in the interior 1-10 AU of nearby exoplanetary systems. The first flight in 2017 will use a 10^(-4) visible nulling coronagraph (previously flown on the PICTURE sounding rocket) and the second flight in 2019 will use a 10^(-7) vector vortex coronagraph. A low-order wavefront corrector (LOWC) will be used in both flights to remove time-varying aberrations from the coronagraph wavefront. The LOWC actuator is a 76-channel high-stroke deformable mirror packaged on top of a tip-tilt stage. This paper will detail the selection of a complementary high-speed, low-order wavefront sensor (LOWFS) for the mission. The relative performance and feasibility of several LOWFS designs will be compared including the Shack-Hartmann, Lyot LOWFS, and the curvature sensor. To test the different sensors, a model of the time-varying wavefront is constructed using measured pointing data and inertial dynamics models to simulate optical alignment perturbations and surface deformation in the balloon environment

    Encapsulated high temperature PCM as active filler material in a thermocline-based thermal storage system

    Get PDF
    A great concern in Concentrated Solar Power (CSP) is to boost energy harvesting systems, by finding materials with enhanced thermal performance. Phase Change Materials (PCM) have emerged as a promising option, due to their high thermal storage density compared to sensible storage materials currently used in CSP. A thermal storage system for solar power plants is proposed, a thermocline tank with PCM capsules together with filler materials, based on multi-layered solid-PCM (MLSPCM) thermocline-like storage tank concept [1,2]. A detailed selection of the most suitable high temperature PCM, their containment materials and encapsulation methods are shown

    Internalization Dissociates ÎČ2-Adrenergic Receptors

    Get PDF
    G protein-coupled receptors (GPCRs) self-associate as dimers or higher-order oligomers in living cells. The stability of associated GPCRs has not been extensively studied, but it is generally thought that these receptors move between the plasma membrane and intracellular compartments as intact dimers or oligomers. Here we show that ÎČ2-adrenergic receptors (ÎČ2ARs) that self-associate at the plasma membrane can dissociate during agonist-induced internalization. We use bioluminescence-resonance energy transfer (BRET) to monitor movement of ÎČ2ARs between subcellular compartments. BRET between ÎČ2ARs and plasma membrane markers decreases in response to agonist activation, while at the same time BRET between ÎČ2ARs and endosome markers increases. Energy transfer between ÎČ2ARs is decreased in a similar manner if either the donor- or acceptor-labeled receptor is mutated to impair agonist binding and internalization. These changes take place over the course of 30 minutes, persist after agonist is removed, and are sensitive to several inhibitors of arrestin- and clathrin-mediated endocytosis. The magnitude of the decrease in BRET between donor- and acceptor-labeled ÎČ2ARs suggests that at least half of the receptors that contribute to the BRET signal are physically segregated by internalization. These results are consistent with the possibility that ÎČ2ARs associate transiently with each other in the plasma membrane, or that ÎČ2AR dimers or oligomers are actively disrupted during internalization

    Visual adaptation enhances action sound discrimination

    Get PDF
    Prolonged exposure, or adaptation, to a stimulus in one modality can bias, but also enhance, perception of a subsequent stimulus presented within the same modality. However, recent research has also found that adaptation in one modality can bias perception in another modality. Here we show a novel crossmodal adaptation effect, where adaptation to a visual stimulus enhances subsequent auditory perception. We found that when compared to no adaptation, prior adaptation to visual, auditory or audiovisual hand actions enhanced discrimination between two subsequently presented hand action sounds. Discrimination was most enhanced when the visual action ‘matched’ the auditory action. In addition, prior adaptation to a visual, auditory or audiovisual action caused subsequent ambiguous action sounds to be perceived as less like the adaptor. In contrast, these crossmodal action aftereffects were not generated by adaptation to the names of actions. Enhanced crossmodal discrimination and crossmodal perceptual aftereffects may result from separate mechanisms operating in audiovisual action sensitive neurons within perceptual systems. Adaptation induced crossmodal enhancements cannot be explained by post-perceptual responses or decisions. More generally, these results together indicate that adaptation is a ubiquitous mechanism for optimizing perceptual processing of multisensory stimuli

    De Novo Peroxisome Biogenesis in Penicillium Chrysogenum Is Not Dependent on the Pex11 Family Members or Pex16

    Get PDF
    We have analyzed the role of the three members of the Pex11 protein family in peroxisome formation in the filamentous fungus Penicillium chrysogenum. Two of these, Pex11 and Pex11C, are components of the peroxisomal membrane, while Pex11B is present at the endoplasmic reticulum. We show that Pex11 is a major factor involved in peroxisome proliferation. We also demonstrate that P. chrysogenum cells deleted for known peroxisome fission factors (all Pex11 family proteins and Vps1) still contain peroxisomes. Interestingly, we find that, unlike in mammals, Pex16 is not essential for peroxisome biogenesis in P. chrysogenum, as partially functional peroxisomes are present in a pex16 deletion strain. We also show that Pex16 is not involved in de novo biogenesis of peroxisomes, as peroxisomes were still present in quadruple Δpex11 Δpex11B Δpex11C Δpex16 mutant cells. By contrast, pex3 deletion in P. chrysogenum led to cells devoid of peroxisomes, suggesting that Pex3 may function independently of Pex16. Finally, we demonstrate that the presence of intact peroxisomes is important for the efficiency of ß-lactam antibiotics production by P. chrysogenum. Remarkably, distinct from earlier results with low penicillin producing laboratory strains, upregulation of peroxisome numbers in a high producing P. chrysogenum strain had no significant effect on penicillin production

    Metal hydrides for concentrating solar thermal power energy storage

    Get PDF
    The development of alternative methods for thermal energy storage is important for improving the efficiency and decreasing the cost for Concentrating Solar-thermal Power (CSP). We focus on the underlying technology that allows metal hydrides to function as Thermal Energy Storage (TES) systems and highlight the current state-of-the-art materials that can operate at temperatures as low as room-temperature and as high as 1100 oC. The potential of metal hydrides for thermal storage is explored while current knowledge gaps about hydride properties, such as hydride thermodynamics, intrinsic kinetics and cyclic stability, are identified. The engineering challenges associated with utilising metal hydrides for high-temperature thermal energy storage are also addressed

    Effect of the COVID-19 pandemic on surgery for indeterminate thyroid nodules (THYCOVID): a retrospective, international, multicentre, cross-sectional study

    Get PDF
    Background Since its outbreak in early 2020, the COVID-19 pandemic has diverted resources from non-urgent and elective procedures, leading to diagnosis and treatment delays, with an increased number of neoplasms at advanced stages worldwide. The aims of this study were to quantify the reduction in surgical activity for indeterminate thyroid nodules during the COVID-19 pandemic; and to evaluate whether delays in surgery led to an increased occurrence of aggressive tumours.Methods In this retrospective, international, cross-sectional study, centres were invited to participate in June 22, 2022; each centre joining the study was asked to provide data from medical records on all surgical thyroidectomies consecutively performed from Jan 1, 2019, to Dec 31, 2021. Patients with indeterminate thyroid nodules were divided into three groups according to when they underwent surgery: from Jan 1, 2019, to Feb 29, 2020 (global prepandemic phase), from March 1, 2020, to May 31, 2021 (pandemic escalation phase), and from June 1 to Dec 31, 2021 (pandemic decrease phase). The main outcomes were, for each phase, the number of surgeries for indeterminate thyroid nodules, and in patients with a postoperative diagnosis of thyroid cancers, the occurrence of tumours larger than 10 mm, extrathyroidal extension, lymph node metastases, vascular invasion, distant metastases, and tumours at high risk of structural disease recurrence. Univariate analysis was used to compare the probability of aggressive thyroid features between the first and third study phases. The study was registered on ClinicalTrials.gov, NCT05178186.Findings Data from 157 centres (n=49 countries) on 87 467 patients who underwent surgery for benign and malignant thyroid disease were collected, of whom 22 974 patients (18 052 [78 center dot 6%] female patients and 4922 [21 center dot 4%] male patients) received surgery for indeterminate thyroid nodules. We observed a significant reduction in surgery for indeterminate thyroid nodules during the pandemic escalation phase (median monthly surgeries per centre, 1 center dot 4 [IQR 0 center dot 6-3 center dot 4]) compared with the prepandemic phase (2 center dot 0 [0 center dot 9-3 center dot 7]; p<0 center dot 0001) and pandemic decrease phase (2 center dot 3 [1 center dot 0-5 center dot 0]; p<0 center dot 0001). Compared with the prepandemic phase, in the pandemic decrease phase we observed an increased occurrence of thyroid tumours larger than 10 mm (2554 [69 center dot 0%] of 3704 vs 1515 [71 center dot 5%] of 2119; OR 1 center dot 1 [95% CI 1 center dot 0-1 center dot 3]; p=0 center dot 042), lymph node metastases (343 [9 center dot 3%] vs 264 [12 center dot 5%]; OR 1 center dot 4 [1 center dot 2-1 center dot 7]; p=0 center dot 0001), and tumours at high risk of structural disease recurrence (203 [5 center dot 7%] of 3584 vs 155 [7 center dot 7%] of 2006; OR 1 center dot 4 [1 center dot 1-1 center dot 7]; p=0 center dot 0039).Interpretation Our study suggests that the reduction in surgical activity for indeterminate thyroid nodules during the COVID-19 pandemic period could have led to an increased occurrence of aggressive thyroid tumours. However, other compelling hypotheses, including increased selection of patients with aggressive malignancies during this period, should be considered. We suggest that surgery for indeterminate thyroid nodules should no longer be postponed even in future instances of pandemic escalation.Funding None.Copyright (c) 2023 Published by Elsevier Ltd. All rights reserved

    Identification and reconstruction of low-energy electrons in the ProtoDUNE-SP detector

    Full text link
    Measurements of electrons from Îœe\nu_e interactions are crucial for the Deep Underground Neutrino Experiment (DUNE) neutrino oscillation program, as well as searches for physics beyond the standard model, supernova neutrino detection, and solar neutrino measurements. This article describes the selection and reconstruction of low-energy (Michel) electrons in the ProtoDUNE-SP detector. ProtoDUNE-SP is one of the prototypes for the DUNE far detector, built and operated at CERN as a charged particle test beam experiment. A sample of low-energy electrons produced by the decay of cosmic muons is selected with a purity of 95%. This sample is used to calibrate the low-energy electron energy scale with two techniques. An electron energy calibration based on a cosmic ray muon sample uses calibration constants derived from measured and simulated cosmic ray muon events. Another calibration technique makes use of the theoretically well-understood Michel electron energy spectrum to convert reconstructed charge to electron energy. In addition, the effects of detector response to low-energy electron energy scale and its resolution including readout electronics threshold effects are quantified. Finally, the relation between the theoretical and reconstructed low-energy electron energy spectrum is derived and the energy resolution is characterized. The low-energy electron selection presented here accounts for about 75% of the total electron deposited energy. After the addition of lost energy using a Monte Carlo simulation, the energy resolution improves from about 40% to 25% at 50~MeV. These results are used to validate the expected capabilities of the DUNE far detector to reconstruct low-energy electrons.Comment: 19 pages, 10 figure
    • 

    corecore