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Abbreviations: CMV, cytomegalovirus; eGFR, estimated glomerular filtration rate; hs-CRP, high 

sensitivity C reactive protein, GENC, glomerular endothelial cells; EMRA, effector memory cells re-

expressing RA; PBMCs, peripheral blood mononuclear cells 

 

ABSTRACT 

Emerging data suggests that expansion of a circulating population of atypical, cytotoxic CD4+ T-cells 

lacking costimulatory CD28 (“CD4+CD28null” cells) is associated with latent CMV infection. The 

purpose of the current study was to increase the understanding of the relevance of these cells in 100 

unselected kidney transplant recipients followed prospectively for a median of 54 months. 

Multicolour flow cytometry of PBMCs prior to transplantation and serially post-transplantation was 

undertaken. CD4+CD28null cells were found predominantly in CMV-seropositive patients, and 

expanded in the post-transplant period. These cells were predominantly effector-memory 

phenotype, and expressed markers of endothelial homing (CX3CR1) and cytotoxicity (NKG2D and 

perforin). Isolated CD4+CD27-CD28null cells proliferated in response to PBMCs previously exposed to 

CMV-derived (but not HLA-derived) antigens, and following such priming incubation with glomerular 

endothelium resulted in signs of endothelial damage and apoptosis (release of fractalkine and von 

Willebrand factor; increased caspase 3 expression). This effect was mitigated by NKG2D-blocking 

antibody. Increased CD4+CD28null cell frequencies were associated with delayed graft function, and 

lower eGFR at end follow-up. This study suggests an important role for this atypical cytotoxic 

CD4+CD28null cell subset in kidney transplantation, and points to strategies that may minimize the 

impact on clinical outcomes.      
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INTRODUCTION  

Cytomegalovirus (CMV) is a ubiquitous β-herpesvirus which may cause significant clinical disease in 

transplanted patients. It is also now appreciated that CMV can exert a range of “indirect effects”, 

including allograft dysfunction, vasculopathy and glomerulopathy, although the mechanisms 

underlying these phenomena are unclear (1-3).  

 

Latent CMV infection in patients with end-stage renal disease (ESRD) is associated with expansion of 

circulating, late-differentiated, cytotoxic CD4+ T-cells. These are characterised by absence of the 

costimulatory molecule CD28 from the cell surface (“CD4+CD28null”)(4). Although also recognised in 

patients with autoimmune conditions such as multiple sclerosis, rheumatoid arthritis and vasculitis 

(5-7), these CD4+CD28null cells are unresponsive to candidate autoantigens (5, 6), but rather respond 

to CMV-derived proteins. Furthermore, one study demonstrated emergence of CD4+CD28null cells in 

4 kidney transplant recipients following primary CMV infection (8), although evaluation of these 

cells’ reactivity to alloantigen has not yet been studied.  

 

In contrast to CD28-expressing CD4+ cells (“CD4+CD28+”), CD4+CD28null cells express cytotoxic 

mediators such as perforin (4, 5, 8), and cells isolated from patients with acute coronary syndromes 

promote damage to human umbilical vein endothelial cells (HUVEC) in vitro (9). Interestingly, 

exposure of CD4+ cells to CMV antigens (but not other viral antigens) promotes expansion of CD4+ 

cells expressing the killer lectin-like receptor NKG2D (10, 11), also uncommonly expressed on CD4+ T-

cells (10). Upon ligation, NKG2D initiates an intracellular cascade culminating in perforin exocytosis 

and consequent cytotoxicity.  

 

The purpose of this study was to gain greater understanding of the epidemiology, biology, and 

clinical consequences of these cytotoxic CD4+ cells in the relatively understudied field of kidney 

transplantation. We evaluated kidney transplant patients from the time of transplantation, 
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undertaking serial examination of circulating CD4+CD28null cell frequencies, demonstrating a close 

relationship with CMV-serostatus. These cells proliferated to CMV-derived antigens, but not to HLA-

derived antigens, and demonstrated toxicity to glomerular endothelial cells in vitro, highlighting the 

role of NKG2D. Elevated cell frequencies were associated with relevant clinical outcomes to 5 years 

post-transplantation.  

 

CONCISE METHODS 

Clinical Cohort 

One hundred unselected recipients of solitary kidney transplants were enrolled into this prospective 

study during 2009. All patients underwent transplantation and follow-up at Queen Elizabeth Hospital 

Birmingham. Local ethics committee approval was granted for the study. 

 

Prior to transplantation, baseline donor and recipient information was collected: donor and 

recipient age and sex, inflammatory cause of renal failure (glomerulonephritis; vasculitis; lupus), HLA 

mismatch (class I and class II), source of transplant (live related; live unrelated; deceased donor 

following brain death [DBD]; deceased donor following cardiac death [DCD]); dialysis modality prior 

to transplantation (pre-emptive versus haemodialysis versus peritoneal dialysis). Transplantation 

proceeded provided the cross match between donor and recipient was negative by flow cytometry 

and cytotoxicity.  

 

Immunosuppression regimen was identical for all participants, and consisted of Basiliximab 

induction followed by maintenance tacrolimus (prograf; trough level 5-8ng/ml initially, measured by 

liquid chromatography-tandem mass spectrometry), mycophenolate mofetil (cellcept; 2g daily 

initially) and prednisolone (20mg daily, reducing to 5mg maintenance by 3 months post 

transplantation). Data collected subsequently in the course of standard clinical care was evaluated: 
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Post operative events of delayed graft function (requirement for dialysis during the first post 

operative week) and biopsy proven acute rejection (any time; any histological grade) were collected.  

 

Estimated glomerular filtration rate (eGFR) was calculated using the 4 variable MDRD (Modification 

of Diet in Renal Disease) equation, with IDMS (Isotope Dilution Mass Spectrometry) aligned 

creatinine measurements; early morning urine albumin:creatinine ratio (UACR) measurement on a 

“spot” urine sample was used as the measure of proteinuria, and high sensitivity C-reactive protein 

(hsCRP) as the marker of inflammation. These were collected at each clinic review following 

transplantation. 

 

Assessment of CMV serostatus, infection, and disease 

Pre-transplant CMV serostatus of the recipients and their donors was collected.  CMV prophylaxis 

with 100 days of valganciclovir was given to the D+R- group only, with dose adjustment for renal 

function. Serial whole blood samples were taken for CMV DNA PCR in all patients at day 0 (prior to 

transplantation), and then weeks 1, 2, 3, 4, 6, 8, 10, 12, 16, 20, 24, 28, 34, 40, 46, and 52. The clinical 

team remained unaware of these results and no changes in clinical management ensued (it is not 

unit policy to undertake viral load testing and pre-emptive therapy in the context of asymptomatic 

CMV infection, as is the case in most centers, and so these assessments were undertaken for 

research purposes only). Additional sampling was undertaken at the time of clinical suspicion of 

CMV disease, which was then diagnosed according to international guidelines and was based on one 

or more of the following in association with the finding of CMV viraemia: fever; new onset severe 

malaise; leucopaenia; thrombocytopaenia; hepatitis (alanine transaminase or aspartate 

transaminase levels greater than twice the upper limit of normal); tissue invasive disease proven by 

histology. For our laboratory, a copy rate of >500 CMV genome copies/ml of whole blood represents 

significant CMV viraemia.  
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Patients who were CMV seronegative at the time of transplantation underwent repeat serological 

testing at 12 months post transplantation to identify those who have developed asymptomatic 

infection within the first year, for whom no DNAemia was detected by protocolised testing as above. 

 

Immunophenotyping 

Multicolour flow cytometry was used to undertake detailed phenotyping of patients’ peripheral 

blood mononuclear cells (PBMCs) prior to transplantation and then 14 days, 3 months, and 12 

months post-transplantation. PBMCs were isolated from heparinised blood of the transplant 

recipient by density gradient centrifugation using Ficoll-Paque (Fisher, UK) and cryopreserved in fetal 

calf serum (FCS) containing 10% DMSO. This was performed within 6 hours following venepuncture.  

 

Based on surface expression of CD27 and CD45RA, the broad differentiation status of CD4+CD28null 

cells and their CD4+CD28+ counterparts was defined as follows. Naïve-like: CD27+CD45RA+; Central 

memory-like (CM): CD27+CD45RA-; Effector memory-like (EM): CD27-CD45RA-; Effector memory cells 

re-expressing RA (“EMRA”): CD27-CD45RA+. The panels of antibodies used for flow cytometric 

analyses are outlined in the supplementary data.  

 

Isolation of CD4+CD27-CD28null and CD4+CD27-CD28pos Cells  

At 12-months post transplantation, heparinised blood was taken from patients shown to have a high 

CD4+CD27-CD28null cell count (>10% total CD4+ T-cells) and PBMCs were isolated by Ficoll-Paque 

(Fisher, UK) gradient. CD4+CD27-CD28null and CD4+CD27-CD28pos cells were isolated first by 

positive selection using a CD4+ T Cell Isolation Kit, followed by selection of CD27 negative cells (using 

anti-CD27 human microbeads) and separation of CD28+ and CD28null cells within this population 

using a CD28 Microbead Kit (Miltenyl Biotec, UK), in accordance to manufacturer’s instructions. 

These cells were used in 2 experiments to investigate i] their proliferative capacity in response to 
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CMV-antigen and HLA-derived peptides, and ii] their ability to induce damage on purified glomerular 

endothelial cells, as described next. 

 

i] Proliferation Assays (CMV- and HLA-derived peptides)  

CD4+CD27-CD28null and CD4+CD27-CD28pos sorted cells were labeled with 0.5µM CFSE (Molecular 

Probes/Invitrogen) in PBS for 5 min at 37°C followed by 5 min in ice-cold RPMI 1640 containing 5% 

human AB serum (Sigma, UK). Cells were then seeded at 105 with 105 antigen-pulsed irradiated 

autologous PBMCs in RPMI 1640 containing 5% human AB serum and incubated at 370C with 5% CO2 

for 5 days. These autologous PBMCs had been pulsed for 4h prior to irradiation with either i) CMV 

lysate [from fibroblasts infected with CMV strain AD69], ii) α3-domain derived Class-I HLA peptides 

(also used in ELISPOT assay described below; Thermo, UK;) or iii) control culture media. Cells were 

surface stained with CD3-APC, CD4-APC-Cy7 (eBiosicences) and Yellow Dead Cell Stain Kit 

((Molecular Probes/Invitrogen), then analysed using a Cyan Flow Cytometer (Beckman Coulter).  

The α3-domain derived Class-I HLA peptides used in the second part of this experiment are known 

targets for cellular alloresponses, and their use allows inter-patient assay standardization (20,21). 

The responding cells are CD28-expressing effector-memory CD4+ cells which recognise cryptic, 

autologous HLA-derived peptide epitopes, such that inter-patient standardisation can be undertaken 

without using distinct HLA peptides tailored to the donor and recipient HLA type (20).  

 

 

ii] Analysis of Damage to Glomerular Endothelial Cells 

Conditionally immortalized human glomerular endothelial cells (GEnC) were kindly gifted by Dr S. 

Satchell, Bristol, UK. These were maintained in supplemented endothelial basal medium-2 (Lonza, 

UK) as described previously (26). GEnC cells were grown until 90% confluence at 330C, then at 370C 

for at least 24h prior to addition of T cells. 
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PBMCs were isolated from patients and incubated for 16h with either CMV lysate, an α3-domain 

derived HLA Class I peptide, or culture media. CD4+CD27-CD28null and CD4+CD27-CD28pos cells were 

then isolated as described above, with 105 cells per well incubated with GEnC, and seeded in 24 well 

plates for 1 hour using transwell inserts to determine the role for chemokines involved in 

lymphocyte migration (specifically fractalkine in this study). One well per patient was incubated with 

either 1µg/ml antiNKG2D antibody or isotype control (BD Biosciences) for 2h prior to addition of T 

cells. Cells were stained for activated caspase 3 (as a marker of apoptosis; BD Biosciences) following 

T-cell migration, whereby GEnC and T cells were differentiated by staining for cell-specific markers 

anti-CD31-APC and anti-CD4-PE (eBiosciences) respectively, and analysed using Cyan flow cytometer 

(Beckman Coulter); In addition, fractalkine production was measured in the supernatants collected 

from GEnC incubated with T-cells by Recombinant Human CX3CL1/Fractalkine ELISA Kit according to 

manufacturer’s instructions (R & D Systems, UK); Von Willebrand Factor (vWF) was also measured in 

supernatants by sandwich ELISA, using unconjugated (capture) and conjugated (detection) vWF 

antibodies (DAKO, UK).  

 

Enzyme Linked Immunosorbent Spot Assay to detect anti-HLA cellular response 

A γ-interferon ELISPOT assay to evaluate the cellular immune response of transplant recipients to 

non-polymorphic HLA-derived peptides was undertaken as previously described (20, 21), and 

described briefly above.  

 

Statistical analysis 

Data are presented as mean ± standard deviation, unless otherwise stated; the figures demonstrate 

data distribution as mean, standard error, median, range, interquartile range and percentiles as 

described in figure legends. Non-normal distributed data underwent transformation as necessary 

prior to analysis. Of note, CD4+CD27-CD28null cell frequencies displayed heavily positive skewing, 

such that straightforward attempts (such as logarithmic transformation) to transform into a more 
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normally distributed scale were not possible. Instead, these data were evaluated using negative 

binomial regression analysis. Other continuously distributed end-point data was evaluated using 

linear regression analysis; categorical endpoints were evaluated by logistic regression; time to event 

outcomes were analysed using a Cox proportional hazards model. For all analyses, initially the effect 

of each predictor variable on the outcome was considered separately in a series of univariate 

analyses. Post-transplant events of acute rejection and CMV infection were analysed as time-

dependent variables as required. Variables showing some effect in the univariate analysis (p<0.15) 

were included in a subsequent multivariable analysis, with a stepwise backwards selection 

procedure to retain only the statistically significant variables in the final model. For all analyses, a 

type 1 error rate below 5% (p<0.05) was considered statistically significant. 

 

Another feature of the data was the fact that there were several measurements for each subject. To 

allow for the non-independence of the data, multilevel statistical methods were used for data 

analysis in the linear regression and negative binomial models. Two-level models were used with 

individual measurements nested within patients. This was implemented using the xtnbreg procedure 

with the Stata statistical software package. For time to event analyses, predictor variable were 

analysed as time-dependent covariates; for analyses of single endpoints (either categorical or 

continuously distributed), averaged values (over the course of the study) for predictor variables 

were entered. 

 

For other analyses, continuously distributed parametric data was compared using Pearson’s 

correlation coefficient and Student’s t-test; multiple-group, independent, non-parametric data was 

analysed by Kruskall-Wallis testing, with post hoc analysis for individual group comparisons; 

multiple-group, non-independent (multiple comparisons over time), non-parametric data was 

analysed by Friedman test. Categorical data was compared using Chi-square testing. Inter-test 

concordance was evaluated using the kappa (κ) statistic. 
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RESULTS 

Clinical outcomes 

The clinical cohort is described in Table 1. Over the study duration, three patients died (from sepsis), 

and four lost their grafts (primary non-function with nephrectomy 2 months post-transplantation, 

early acute rejection, recurrent disease, late [14 months] acute rejection); all patients underwent 

serial sampling (as described in “methods”) until death or graft failure (95 patients were alive with 

graft function at 12 months post-transplantation). For the entire cohort, median follow-up was 54 

months (range 2-60 months). For the 93 patients alive with graft function at the end of the study, 

mean eGFR at the end of follow-up was 52±17ml/min/1.73m2, and median UACR was 2.6 mg/mmol 

(IQR:1.0-6.6;range 0.3-280). Twenty-three patients experienced DGF, and twenty-five acute 

rejection (≥Banff grade 1). 

 

In the D-R- group, 1 patient developed detectable CMV DNAemia (with clinical disease) and 1 

seroconverted without prior detectable DNAemia. In the D+R- group (prophylaxed for 100 days), 5 

patients developed detectable DNAemia (2 clinical disease) and 3 seroconverted without detectable 

DNAemia. In the D-R+ group, 6 patients developed detectable DNAemia (1 clinical disease). In the 

D+R+ group, 9 patients developed detectable DNAemia (3 clinical disease). 

CD4+CD28null cell frequencies, expansion and CMV status 

Circulating CD4+CD28null cell frequencies (expressed as a percentage of total CD4+ cells), and the flow 

cytometry gating strategy these results are based on, are shown in Figure 1. CD4+CD28null 

frequencies were higher in seropositive recipients than seronegative recipients at all timepoints 

(Kruskall-Wallis p<0.05 for all timepoints; Figure 1B). This was particularly evident at the 12-month 

timepoint, as there was expansion of CD4+CD28null frequencies in CMV-seropositive recipients over 

time (irrespective of donor CMV status; p<0.001 by Friedman test) that was not seen in the CMV-

seronegative patients (p=NS). The cell frequencies of these CMV-seronegative patients are also 

shown in Figure 1C, the y-axis of which is set to a smaller scale reflecting the low frequencies of cells 
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in these patients. Multivariable analysis (Table 2) showed recipient serostatus and time post 

transplantation as the significant independent predictors of CD4+CD28null cell frequencies. In the 

entire cohort, although development of CMV infection (detection of DNAemia or “silent” 

seroconversion) was associated with CD4+CD28null expansion on univariate analysis, this did not hold 

in the multivariate analysis.  

 

Although as mentioned above, there was no expansion of CD4+CD28null cells in CMV-seronegative 

recipients, the individuals who did experience primary CMV infection within the first year (either 

with or without clinical disease as described above; n=10), displayed increases in CD4+CD28null 

frequencies from pre-transplant (median 0.1 [range 0.0-0.6]) to 12 months post-transplantation 

(median 2.1 [range 0.1-6.0]; p=0.009). Multiple regression analysis (adjusted for variables in Table 2) 

demonstrated prior CMV infection as the only predictor of CD4+CD28null frequencies in these patients 

(ratio:9.67 (95%CI:3.30-28.40;p<0.001). Figure 1D demonstrates the evolution of CD4+CD28null cells in 

these 10 specific patients. 

 

Episodes of inflammation are associated with expansion of CD4+CD28null cells in CMV-seropositive 

recipients 

In vitro work and clinical data from patients with critical illness suggests importance of inflammation 

in driving CMV reactivation (12-15). Because information was lacking in regard to inflammatory 

events or markers prior to transplantation, we undertook a separate “delta analysis” identifying 

factors associated with changes (“deltas”) in cell frequencies between sampling timepoints (i.e. 

baseline to 14 days; 14 days to 3 months; 3 months to 12 months). Analysis focused on the 

relationship between the highest recorded (peak) hsCRP measurement during these timepoints and 

the delta CD4+CD28null frequencies between these timepoints. Peak hsCRP values demonstrated 

positive skewing (median:21mg/L;range 0.3-140mg/L); delta CD4+CD28null frequencies were normally 

distributed (mean:1.0±3.8;range -11.1 to 16.7). In the entire cohort, some association between 
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hsCRP and delta CD4+CD28null cells was seen (coefficient:0.5;95%CI:0.1-1.1;p=0.07). A significant 

statistical interaction between peak hsCRP and recipient CMV-serostatus was seen (p<0.05), with a 

significant relationship between hsCRP and delta count only in CMV-seropositive recipients 

(coefficient:1.0; 95%CI:0.2-1.8;p=0.02). Figure 1E (left panel) shows the line of best fit demonstrating 

the relationship between hsCRP and expansion of CD4+CD28null cells (based on the output from the 

regression analysis) in both serostatus groups. Indeed hsCRP was the only independent predictor of 

delta count in seropositive recipients when adjusted for variables in Table 2, including the 

development of CMV viremia between timepoints. Furthermore, in subgroup analysis of these CMV-

seropositive patients in whom CD4+CD28null cell expansion was seen, a further interaction between 

hsCRP and timepoint was evident (p=0.007), and suggested episodes of inflammation had a greater 

effect upon CD4+CD28null cell expansion at times beyond 14 days post-transplantation. This 

relationship is demonstrated in Figure 1E (right panel).  In summary, this suggests episodes of 

inflammation may drive expansion of CD4+CD28null cells in CMV-seropositive recipients, particularly 

beyond 14 days post-transplantation. 

 

In CMV-seropositive recipients CD4+CD28null cells display predominant effector memory-like or 

EMRA-like phenotype 

In CMV-seropositive individuals the majority of CD4+CD28null cells displayed either an EM or EMRA 

phenotype compared to CD4+CD28+ cells (Figure 2;Panels A/B versus Panels C/D;p<0.001). This 

confirms CD4+CD28null cells in CMV-seropositive individuals as a “late-differentiated”, antigen-

experienced population; this data is compatible with the concept that CD4+ cells lose surface CD27 

and then CD28 during differentiation (4-8).  

 

CMV-seronegative recipients’ CD4+CD28null cells more commonly expressed CD27 than those from 

seropositive individuals, thereby displaying a ‘naïve-like’ or ‘CM-like’ phenotype. This pattern of loss 

of CD28 without loss of CD27 may represent recent CD4+-cell activation and temporary 
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downregulation of CD28 in isolation, as previously suggested (16). This is shown in Figure 2 (panels E 

and F) which show data from CMV-seronegative patients excluding patients who experienced CMV 

infection in the first 12 months post transplantation (as described above); these data therefore 

demonstrate the ‘natural history’ of the (lack of) evolution of CD4+CD28null cells across the first year 

post-transplantation in recipients who were CMV-seronegative at the time of transplantation. It 

should be specifically highlighted that the low CD4+CD28null cell frequencies in CMV-seronegative 

patients means that the surface phenotyping results in these patients require cautious 

interpretation (representative flow cytometry readouts for seropositive and seronegative patients 

are shown in Figures 2I and 2J respectively).  

 

We next analysed those CMV-seronegative patients who developed primary CMV infection during 

the first year post-transplantation (described above and Figure 1D). In these patients, phenotype 

characteristics resembled those of CMV-seropositive patients, with an EM or EMRA phenotype in 

44±8% and 31±6% of these patients at 12 months respectively. These proportions were greater than 

the proportion of EM or EMRA seen at baseline in these patients, and also greater than the 

proportions in CMV-seronegative patients who did not experience CMV infection during the first 

year (p<0.05 for all comparisons).  

 

CD4+CD28+ cells from CMV-seronegative and CMV-seropositive individuals displayed a similar 

phenotype as shown in Figure 2 panels C/D and G/H respectively (the latter again excluding patients 

experiencing CMV infection in the first 12 months post-transplantation). These described phenotype 

characteristics were stable during the first year post-transplantation. 
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CD4+CD27-CD28null cells display markers of endothelial homing and cytotoxic potential 

Further detailed immune phenotyping of CD4+CD28null and their comparator CD4+CD28+ cells was 

then undertaken. As CD4+CD28null cells were essentially limited to CMV-seropositive patients, 

phenotyping was undertaken 12 months post-transplantation in this group (49 patient samples 

available from the 52 CMV-seropositive patients alive with graft function at 12 months). As also 

described above, the majority of CD4+CD28null cells in CMV-seropositive individuals display an 

effector-memory phenotype, whereas many CD4+CD28+ cells display naïve-or CM-like characteristics. 

Therefore, we compared specifically the flow cytometry characteristics of the effector-memory 

subsets of both cell types, i.e. CD4+CD27-CD28null versus CD4+CD27-CD28+ cells, with CD4+CD27-

CD28null cells representing a later differentiated population of effector-memory cells. We did not 

attempt to differentiate EM and EMRA in these analyses.  

 

Of particular interest, CD4+CD27-CD28null cells displayed increased expression of the natural killer 

(NK) cell marker NKG2D and also of perforin. Figure 3A shows the gating strategy for these 

phenotype characeristics. Figure 3B shows the summary data for these and other surface phenotype 

characteristics for which differences between CD4+CD27-CD28null and CD4+CD27-CD28+ cells were 

seen. CD4+CD27-CD28null cells also displayed increased expression of the late-differentiation marker 

CD57. Another NK receptor, CD56, was also expressed at higher levels although the difference was 

not as marked as for NKG2D. Furthermore, expression of the fractalkine receptor CX3CR1 was 

almost exclusive to CD4+CD27-CD28null cells, suggesting capability of homing to fractalkine-releasing 

inflamed endothelium. Of relevance to endothelial homing and tissue invasion potential was 

increased expression of CD11a (component of LFA-1) and CD49d (component of VLA-4) in the 

CD4+CD27-CD28null population.  It is worth noting that CD11a and CD49d may also act as 

costimulation molecules as well as purely adhesion molecules (17, 18). CD4+CD27-CD28null cells also 

expressed higher levels of other costimulation receptors CD134 (OX-40) and CD137 (4-1BB), albeit at 

low absolute levels in the resting state. 
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In comparison, Figure 3C shows surface characteristics which did not differ between CD4+CD27-

CD28null and CD4+CD27-CD28+ cells (p>0.05 for all comparisons). Specifically, despite increased 

expression of NK markers on CD4+CD27-CD28null cells, expression of the Vα24Vβ11 TCR, which is 

characteristically expressed on iNKT cells, was low and comparable to that in CD4+CD27-CD28+ cells. 

No difference in expression of the lymph node homing molecule CD62L was seen between 

CD4+CD27-CD28null and CD4+CD27-CD28+ cells, in keeping with the effector-memory characteristics of 

both these cell subsets. Despite the “late differentiation” status of CD4+CD27-CD28null cells, 

expression of the inhibitory costimulation molecules KLRG-1 or PD-1, considered markers of T-cell 

“exhaustion”, was not increased. 

 

CD4+CD27-CD28null cells from CMV-seropositive transplant recipients proliferate in response to 

CMV lysate but not HLA-derived peptide 

CD4+CD27-CD28null and CD4+CD27-CD28+ cells were isolated from CMV-seropositive recipients 12 

months post-transplantation (n=10), and examined for their proliferative responses to irradiated 

autologous PBMCs alone (“control”), or PBMCs previously exposed to either CMV-derived or HLA-

derived peptides. Figure 4 demonstrates representative flow cytometry analyses (left panel) and 

summary data (right hand panels).  

 

CD4+CD27-CD28null proliferation in response to CMV antigen was evident in all patients, whereas no 

response to HLA peptide was observed in any (p<0.01). Differences in proliferation across groups 

was seen (p<0.005), with proliferation of CD4+CD27-CD28null cells pulsed with CMV lysate 

significantly increased compared to either control (no antigen), HLA pulsed CD4+CD27-CD28null cells, 

or CD4+CD27-CD28+ cells pulsed with CMV lysate (p≤0.01 for all comparisons).  

 

The lack of proliferation of CD4+CD27-CD28null cells to HLA peptide was not a reflection of assay 

sensitivity, as CD4+CD27-CD28+ cells from 50% (5/10) of patients demonstrated proliferative 
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responses to HLA-derived peptides (p=0.01). Interestingly, there was complete inter-patient 

concordance between this assay of CD4+CD27-CD28+ cell proliferation to HLA-derived peptides and 

the responses in the IFN-γ ELISPOT assay (“raw” data not shown), with all 5 patients responding in 

one assay also responding in the other, and all 5 patients unresponsive in one assay being similarly 

unresponsive in the other (κ-statistic=1.0; p=0.008). 

 

Glomerular endothelial cell (GEnC) injury following exposure to CD4+CD27-CD28null cells  

PBMCs from CMV-seropositive transplant recipients (n=4) were incubated for 16h in media alone 

(control) or with either CMV lysate or HLA peptide. Thereafter, 105 CD4+CD27-CD28null or CD4+CD27-

CD28+ cells were isolated and incubated with GEnC for 6 hours. Figure 5 demonstrates release of 

vWF and fractalkine from GEnC, and increased intracellular active caspase 3 expression within GEnC 

following incubation with CD4+CD27-CD28null cells pre-exposed to CMV lysate. This was not seen with 

CD4+CD27-CD28null cells pre-incubated with HLA-derived peptide, nor with CD4+CD27-CD28+ cells pre-

incubated with either CMV-derived HLA-derived peptide (p<0.05 for all comparisons). Of particular 

note, all effects were attenuated by addition of NKG2D-blocking antibody to GEnC for 2 hours prior 

to, and then during their incubation with CD4+CD27-CD28null cells (p<0.05 for all comparisons).  

 

 

Increased circulating CD4+CD28null cells are independently associated with delayed graft function 

and inferior medium-term allograft function  

CD4+CD28null frequencies immediately prior to transplantation were significantly associated with 

post-operative DGF. This relationship held when adjusted for baseline demographics, including 

donor/recipient CMV serostatus (multivariate model shown in Table 3). 

Graft failure was uncommon, and so not investigated as an outcome. However, eGFR at the end of 

follow up was associated with increased CD4+CD28null cell frequencies (averaged over follow-up), 

with 7.3ml/min lower eGFR for each log10 increase in CD4+CD28null cells in the multivariate analysis 
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which included adjustment for DGF and also for peak hsCRP averaged over time (p=0.03; Table 3). 

No statistical interaction between CD4+CD28null cells and either DGF or acute rejection was seen for 

the eGFR endpoint. Results were similar when CD4+CD28null cell frequencies specifically at 12 months 

were analysed as the predictor variable (Beta = -7.8 (-14.9, -0.7); p=0.02). 

 

No association was found between CD4+CD28null cells (averaged over follow-up) and log-transformed 

UACR at end of follow-up, or between baseline CD4+CD28null cells and time to acute rejection (final 

multivariate models shown in Table 3). 

 
 
DISCUSSION 
 
 
This study represents a detailed, prospective, longitudinal examination of CD4+CD28null cells in 

unselected kidney transplant recipients. Our work demonstrates CD4+CD28null T-cell expansion is 

driven by inflammation on a background of latent CMV infection. CD4+CD28null cells isolated from 

kidney transplant recipients responded to CMV-derived antigens in vitro, but not to HLA-derived 

antigens. Detailed phenotyping of CD4+CD28null cells confirmed their late differentiation status and 

potential for endothelial adhesion, tissue invasiveness, and cytotoxicity. In addition, exposure of 

CD4+CD28null cells to glomerular endothelial cells in vitro resulted in NKG2D-dependent endothelial 

cell activation and apoptosis. This mechanism might plausibly explain the association between 

increased CD4+CD28null cells and important clinical endpoints such as DGF and eGFR 5 years post-

transplantation. Taken together these data point to the importance of this cell subset in kidney 

transplantation, particularly in regard to “indirect” effect of CMV on kidney allograft function and 

outcome (1-3).  
Expansion of circulating CD4+CD28null cells is recognized for CMV-seropositive patients with ESRD (4). 

The current study extends the available evidence in kidney transplantation, again showing this 

circulating subset as “pathognomonic” of latent CMV at the time of transplantation. A novel finding 
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is that episodes of significant inflammation are associated with subsequent expansion of 

CD4+CD28null cells. This resonates with increased CD4+CD28null cell frequencies in CMV-seropositive 

patients with ESRD (a state of chronic inflammation) (4), and in other autoinflammatory conditions 

(5-7). In CMV-seropositive recipients, no independent association between CD4+CD28null cell 

expansion and the development of prior CMV DNAemia was seen, suggesting the latter was not a 

“pre-requisite” for expansion of these cells. One plausible explanation for this might be that 

episodes of inflammation drive “abortive” viral replication, whereby inflammation-induced dendritic 

cell expression of early viral antigens is not followed by overt viraemia (13), but might nevertheless 

incite an immune response (in this case CMV-specific CD4+CD28null cells). Regarding this, knowledge 

of specific viral proteins to which CMV-specific CD4+ cells respond would be informative, but is not 

currently available and was beyond the current study’s scope. But of relevance many healthy CMV-

seropositive individuals control CMV effectively with a CD8+ T-cell repertoire predominantly directed 

against early-expressed viral proteins, rather than later structural components(19).  

 
 
The relationship between CD4+CD28null cells and CMV-serostatus is likely more than mere association, 

as purified CD4+CD28null cells (specifically CD4+CD27-CD28null cells) isolated from patients proliferated 

to CMV antigens in vitro. Importantly, CD4+CD27-CD28null cells demonstrated no evidence of HLA-

alloreactivity, this being confined to the CD28-expressing CD4+CD27-CD28+ subset. The robustness of 

this important and novel finding is supported by the perfect concordance between this proliferation 

assay and IFN-γ release in a “confirmatory” ELISPOT assay, which is specifically relevant because 

previous studies showed the responding cells in this ELISPOT assay also demonstrate an EM-like 

CD4+CD28+ phenotype (20, 21).  

 
 
Further detailed immune phenotyping was undertaken on samples available 12 moths post 

transplantation. And so although the temporal dynamics of the findings cannot be assessed (and was 

not a primary aim of the study), we can confirm CD4+CD27-CD28null cells as late-differentiated 
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(expressing CD57), effector memory cells with increased cytotoxic potential (expressing NKG2D and 

perforin). They express very low levels of the lymph node homing receptor CD62L, but high levels of 

the receptor for fractalkine (a chemokine of endothelial origin) along with increased expression of 

adhesion molecules, collectively suggesting capabilities of endothelial homing and tissue-

invasiveness.  

 
Increased CD4+CD27-CD28null expression of fractalkine receptor (CX3CR1) makes biological sense 

regarding CMV cellular immunity, as endothelium is a key site of CMV latency and reactivation (22). 

However, the current study suggests that an unwanted consequence of CMV immunosurveillance 

may be development of endothelial injury, which was mediated by CD4+CD27-CD28null cells in vitro. 

Preincubation of PBMCs with CMV antigen was required to induce this injury, which was mitigated 

by addition of NKG2D-blocking antibody. This NK receptor represents an integral component of CMV 

immunosurveillance and immunoevasion (23), was upregulated on CD4+CD27-CD28null cells isolated 

from patients in the current study, and we propose as an important component of the cytotoxic 

effects (either protective or pathogenic) of these cells. Indeed HUVEC injury by CD4+CD28null cells in 

the context of coronary disease is independent of conventional T-cell receptor ligation (9), and so the 

current study extends these observations specifically to glomerular endothelial injury, highlighting 

the importance of CMV and NKG2D in the process. Although not specifically addressed in the current 

study, it is recognized that human endothelial cells express NKG2D ligands (24), and it is likely (albeit 

unproven) that the same holds for GEnC. These results also align with other broader observations 

(from non-transplant cohorts) including induction of NKG2D on CD4+ cells exposed to CMV antigen 

(10, 11), degranulation of NKG2D-expressing CD4+ cells in the presence of endothelial cells (24), 

endothelial fractalkine release following exposure to CD4+ cells from CMV-seropositve individuals 

(albeit not further characterised phenotypically) (25), and CMV-induced endothelial damage in a 

rodent model which is independent of endothelial infection (26).  
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The use of GEnC is relevant as these glomerular cells display unique structural and functional 

properties which are not shared by endothelial cells of different vessels, anatomical locations, or 

species (27). The conditionally immortalized cells (“ciGEnC”) used in this study retain similar 

morphological and physiological characteristics as primary culture human GEnC (27), and therefore 

give informative insights into events occurring in vivo. Indeed a major component in the 

pathogenesis of both DGF and chronic allograft dysfunction is endothelial injury (28, 29), and 

therefore the mechanism of endothelial injury described above may explain the independent 

associations between CD4+CD28null cell expansion at baseline and the development of DGF, and also 

between CD4+CD28null cell numbers during the first year post-transplantation and renal function at 5 

years post-transplantation. Further insight into this may be gained from detailed histological 

evaluation, which might demonstrate precise anatomic localization of CD4+CD28null cells, and also 

further characterize their phenotype, specifically in regard to whether they represent a 

subpopulation of CD4 tissue-resident memory cells. This will be the focus for future work. 

 

Although sampling was not continued beyond the first year, the intensive protocol and detailed 

phenotyping conducted during this critical period adds robustness and relevance to these findings, 

which are novel to transplantation but resonate with the inverse association between circulating 

CD4+CD28null cells and renal function in a cross sectional study of stable patients with renal vasculitis 

(6). This link between CMV, inflammation (discussed above) cytotoxic CD4+CD28null cell expansion, 

endothelial injury and allograft dysfunction may contribute to explaining the well-recognised but 

incompletely understood association between inflammation and graft outcome (30, 31), and may 

even go towards explaining the so-called “transplant paradox” whereby improvements in acute 

rejection rates have not been mirrored by long-term improvement in graft survival (32).  

 

In summary, this study reveals that expansion of CMV-related, cytotoxic CD4+CD28null cells is an 

important biomarker for, and potential mediator of, adverse events following kidney transplantation. 
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Interventions to avoid and reduce CMV infection (33) and potentially novel strategies to interfere 

with CD4+CD28null cell toxicity (34) may result in further improvements in allograft outcome. 
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FIGURE LEGENDS 

 

Figure 1 

 

The gating strategy (Figure 1A) and results (Figure 1B) for the flow cytometry identification of 

CD4+CD28null cells is shown. CD4+CD28null cell frequencies (expressed as a proportion of total CD4 

cells) over time are shown in Figures 1B and 1C as median (line) and interquartile range (boxes). 

Outliers were defined as having values greater than 1.5 interquartile ranges above the value 

differentiating the upper 3rd and 4th quartiles (ie the top of the interquartile range/box). The 

whiskers of the plots demonstrate the range of values not including these outlying values. Figure 1B 

(and accompanying table) demonstrates significant differences in cell frequencies across CMV-

serostatus subgroups at all timepoints (Kruskall-Wallis p<0.05 for all) and evidence of expansion of 

CD4+CD28null cells in CMV seropositive recipients over the first year post-transplantation, which was 

not see in their CMV-seronegative counterparts (Friedman test p<0.001 for D-/R+ and D+/R+ groups).  

 

Figure 1C demonstrates the same data as Figure 1B for CMV-seronegative recipients, but with an 

approximately 10-fold difference in y-axis scale reflecting the far lower cell frequencies in these 

patients. 

 

Figure 1D demonstrates expansion of CD4+CD28null cells in 10 patients who were seronegative at the 

time of transplant and who developed CMV infection during the first 12 months post transplantation 

(2 received kidneys from CMV-seronegative donors, and 8 from CMV-seropositive donors).  
 

Figure 1E shows the association between delta CD4+CD28null cell count and peak hsCRP across 

sampling time points. Sampling time points were baseline to 14 days; 14 days to 3 months; and 3 

months to 12 months. The “delta count” (as described in “methods”) represents the absolute 
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change in CD4+CD28null frequency (expressed as the percentage of total CD4+ cells) between time 

points. Curves shown represent lines of best fit from the regression analyses undertaken. Figure 2A 

demonstrates the relationship between delta count (all time points considered) and hsCRP in all 

studied patients. This shows the influence of inflammation on CD4+CD28null cell expansion was only 

evident in CMV-seropositive recipients. Further analysis of this CMV-seropositive group (only) is 

represented in Figure 2B. This shows the influence of time post-transplantation on the relationship 

between hsCRP and delta CD4+CD28null cell count, whereby this effect of inflammation-associated 

CD4+CD28null cell expansion is only seen beyond 14 days post-transplantation in this CMV-

seropositive group. 

Samples available and analysed for 100 patients pre-transplant, 94 patients at 14 days, 92 patients 

at 3 months, and 90 patients at 12 months. 

 

Figure 2 

 

Frequencies of naïve, central memory (CM), effector memory (EM) and effector memory re-

expressing RA (EMRA) cells within the CD4+CD28null and CD4+CD28+ cell populations are shown (as 

defined by CD27 and CD45RA co-expression; see methods). In CMV-seropositive recipients the 

majority of CD4+ CD28null cells display an EM-like or EMRA-like phenotype (A and B), contrasting with 

their phenotype in CMV-seronegative recipients (E and F), and also with the phenotype of CD4+ 

CD28+ cells from either seropositive or seronegative recipients (C, and D and G and H). Samples 

available and analysed for 100 patients pre-transplant, 94 patients at 14 days, 92 patients at 3 

months, and 90 patients at 12 months. Data normally distributed and displayed as mean and 

standard error. To demonstrate the “natural history” of the evolution of cell frequencies in CMV-

seronegative patients, the data shown in Panels E through H exclude patients who were CMV-

seronegative at the time of transplant and who developed evidence of CMV infection during the first 

year post transplantation (total n=10 as described further in text). “Representative” flow cytometry 
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readouts for the evaluation of CD4+CD28null cell phenotype are shown in Figures 2I and 2J. Figure 2I 

shows data from a CMV-seropositive patient sampled at month 12 (CD4+CD28null cells comprised 4% 

of total CD4+ population); Figure 2J shows data from a CMV-seronegative patient also sampled at 

month 12 (donor CMV-seronegative; no CMV disease, infection or seroconversion by 12 months; 

CD4+CD28null cells comprised 0.6% of total CD4+ population). Although the results from CMV-

seronegative patients are interpretable, results are not as robust as for the case of seropositive 

patients displaying higher CD4+ CD28null cell frequencies. 

 

 

Figure 3 

 

Example gating strategy and summary data demonstrating phenotypic comparison between 

CD4+CD27-CD28null and CD4+CD27-CD28+ cells in 49 CMV seropositive recipients alive with graft 

function at 12 months post-transplantation. Initial gating to define CD4+CD27-CD28null and CD4+CD27-

CD28+ cells was conducted as shown in Figure 1A. Figure 3A then demonstrates surface staining for 

NKG2D and intracellular staining for perforin in CD4+CD27-CD28null cells (lower panel), which was 

absent in the CD4+CD27-CD28+ compartment (upper panel). 

Figure 3B demonstrates summary data for those phenotype characteristics which differed between 

between CD4+CD27-CD28null and CD4+CD27-CD28+ cells (p<0.05 for all); Figure 3C demonstrates 

phenotyping characteristics where no difference was observed between these cell subsets. Data 

normally distributed and displayed as mean and standard error. 

 

Figure 4 

 

Flow cytometric analysis demonstrating proliferation of CD4+CD27-CD28null and CD4+CD27-CD28+ cells 

from CMV positive renal transplant patients (n=10). Proliferation of CD4+CD27-CD28null and 
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CD4+CD27-CD28+ cells was evaluated by CFSE dilution. Cells were pulsed with irradiated autologous 

PBMCs previously exposed to either control culture media, CMV lysate, or HLA peptide. Example 

plots of flow cytometric analysis are displayed in left hand panel with summary data from the 10 

subjects shown in right hand panel. Differences in proliferation across groups was seen (p<0.005 by 

Kruskall-Wallis), with proliferation of CD4+CD27-CD28null cells pulsed with CMV lysate significantly 

increased compared to either control (no antigen), HLA pulsed CD4+CD27-CD28null cells, or CD4+CD27-

CD28+ cells pulsed with CMV lysate (p<0.01 for all comparisons; Kruskall-Wallis with post hoc testing). 
Data displayed as median (bars), interquartile range (boxes) and range (whiskers). 

 
Figure 5 

 

Glomerular Capillary Endothelial cells (GEnC) were incubated with 105 CD4+CD27-CD28null or 

CD4+CD27-CD28+ cells isolated from CMV positive renal transplant patients (n=4), incubated for 16h 

in media alone (Control) or stimulated with CMV lysate or HLA peptide prior to sorting. At 6 hours, 

release of vWF, release of fractalkine, and frequency of GEnCs expressing active caspase 3 was 

significantly different across experiments (Kruskall-Wallis p=0.001), and specifically increased 

following prior incubation of CD4+CD27-CD28null cells with CMV lysate compared to either control 

media, HLA peptide (p<0.05 for both comparisons; Kruskall-Wallis with post hoc testing), and also 

compared with CD4+CD27-CD28+ cells pretreated with either CMV lysate or HLA peptide (p<0.05 for 

both post hoc comparisons in all experiments). This effect was inhibited by incubation with an 

NKG2D blocking antibody during and two hours prior to the addition of CD4+CD27-CD28null cells (post 

hoc p<0.05 for all experiments). Data displayed as median (bars), interquartile range (boxes) and 

range (whiskers). 
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Table 1. Patient demographics  Recipient Age 48±14 years Recipient Sex 55 male  Recipient ethnicity White Indo-Asian African-Caribbean 

 74 15 11Cause of Renal Failure Glomerular Cystic Diabetes Hypertension Other 
 29 19 14 19 19 Pre Transplant Modality Haemodialysis Peritoneal Dialysis Pre-emptive 
 38 35 27Repeat transplantation 23 Donor Age 47±15 years Transplant Source Deceased donor    (DBD1)    (DCD2) Live donor 
 56 (44) (12) 44Donor-Recipient HLA Mismatch Class I (HLA-A+B) Class II (HLA-DR)  2.1±0.9 Ag 0.9±0.7 Ag Donor-Recipient CMV Serostatus D-R- D-R+ D+R+ D+R- 
  25 22 32 21 Biopsy proven Acute rejection 25 Delayed graft Function3 23 Cytomegalovirus Asymptomatic infection4 Disease5  18 7 

1 Donation after Brain Death 
2 Donation after Cardiac death 
3 Requirement for dialysis within the first week post transplantation 
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4 Denotes the development of asymptomatic CMV viremia on protocol sampling, or the de 
novo development of anti-CMV antibody in those patients who were seronegative at the 
time of transplantation – none of these patients displayed evidence of clinical disease (see 
text for details) 
5 Denotes the development of symptomatic CMV disease requiring clinical intervention 
 
 
 
 
Table 2. Predictors of CD4+CD28null cell frequencies  
Variable Category Univariate Ratio 

(95%CI) 
p-value Multivariate Ratio 

(95%CI) 
p-valueTime Baseline 14 days 3 months 12 months 

10.64 (0.33, 1.29) 0.90 (0.47, 1.75) 2.31 (1.36, 3.92)   <0.001 
10.58 (0.31, 1.09) 0.75 (0.41, 1.37) 1.92 (1.17, 3.14) 

   <0.001 CMV Status D-R- D+R- D-R+ D+R+ 
10.53 (0.21, 1.36) 3.16 (1.39, 7.19) 4.46 (1.86, 10.70)   <0.001 

10.65 (0.25, 1.68) 4.45 (1.90, 10.40) 4.28 (1.78, 10.30) 
   <0.001 CMV Infection* Yes 4.40 (1.77, 10.9) 0.001  Recipient Age Per 10 years 0.9 (0.76, 1.28) 0.91  Recipient Sex Male vs Female 1.76 (0.88, 3.55) 0.11  Inflammatory Diagnosis** Yes 1.53 (0.69, 3.38) 0.30  Dialysis Modality Haemodialysis Peritoneal Dialysis Pre-emptive 10.54 (0.23, 1.25) 0.46 (0.19, 1.10)  0.16  

Repeat Transplantation Yes 1.75 (0.67, 4.58) 0.25  Class I HLA Mismatch Per antigen 0.93 (0.65, 1.33) 0.67  Class II HLA Mismatch Per antigen 0.92 (0.54, 1.57) 0.76  Delayed Graft Function*** Yes 1.30 (0.60, 2.83) 0.51  Rejection**** Yes  1,37 (0.62, 3.05) 0.44  
 
Table 2 shows the predictors of CD4+CD28null cell frequencies (expressed as a proportion of total CD4+ cells) in 
the study population. Results from univariate and multiple regression models displayed. The effect sizes are 
summarised in the form of ratios. For the categorical variables these represent the ratio of CD4+CD28null cell 
frequencies in each category relative to a baseline category. For the continuous variables, these represent the 
change in ratio for a one-unit increase in that variable (unless otherwise indicated).  
 
*denotes either i] detection of CMV DNAemia (either clinically manifest or silent) prior to sampling time or ii] 
recipient seroconversion prior to sampling time 
**denotes primary renal disease due to inflammatory nephritis (e.g vasculitis, lupus, glomerulonephritis) 
***defined as dialysis requirement in first week post transplantation 
****Biopsy proven rejection (any grade) prior to sampling time 
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Table 3. Predictors of clinical endpoints 
 
 
 
Variable Category Effect Size p-value  

eGFR at end of follow up1  CD4+CD28null count Expressed as proportion of total CD4 cells; log10 scale -7.3 (-15.2, -0.6) 0.03 Biopsy-proven acute rejection Yes (any grade) -9.9 (-18.8, -0.9) 0.03 Donor Age Per 10 years -6.9 (-11.4, -2.4) 0.01  
Delayed Graft function2  CD4+CD28null count Expressed as proportion of total CD4 cells; log10 scale 1.81 (1.11, 2.95) 0.02 Recipient Age Per 10 years 1.53 (1.04, 2.24) 0.03 Donor Age Per 10 years 1.39 (1.05, 1.84) 0.03  

UACR at end of follow up1  Biopsy-proven acute rejection Yes (any grade) 3.02 (1.58, 5.81) 0.001 Delayed Graft Function Yes 2.15 (1.13, 4.12) 0.02  
Time to Biopsy Proven Acute Rejection3  Class II HLA Mismatch Per Antigen 1.93 (1.04, 3.59) 0.04 CMV infection* Yes 9.91 (2.94, 33.4) <0.001 dnDSA** Yes 3.42 (1.69, 6.92) 0.01     Table 3 shows final multivariate model describing relationships between predictor variables and clinical outcomes.  Effect size reported as 1 beta coefficient; 2 odds ratio; 3 hazard ratio *denotes detectable CMV DNAemia  **de novo anti HLA donor-specific antibody 

 
 
 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

  

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

  

 


