20 research outputs found

    The neurosurgical benefit of contactless in vivo optical coherence tomography regarding residual tumor detection: A clinical study

    Get PDF
    PurposeIn brain tumor surgery, it is crucial to achieve complete tumor resection while conserving adjacent noncancerous brain tissue. Several groups have demonstrated that optical coherence tomography (OCT) has the potential of identifying tumorous brain tissue. However, there is little evidence on human in vivo application of this technology, especially regarding applicability and accuracy of residual tumor detection (RTD). In this study, we execute a systematic analysis of a microscope integrated OCT-system for this purpose.Experimental designMultiple 3-dimensional in vivo OCT-scans were taken at protocol-defined sites at the resection edge in 21 brain tumor patients. The system was evaluated for its intraoperative applicability. Tissue biopsies were obtained at these locations, labeled by a neuropathologist and used as ground truth for further analysis. OCT-scans were visually assessed with a qualitative classifier, optical OCT-properties were obtained and two artificial intelligence (AI)-assisted methods were used for automated scan classification. All approaches were investigated for accuracy of RTD and compared to common techniques.ResultsVisual OCT-scan classification correlated well with histopathological findings. Classification with measured OCT image-properties achieved a balanced accuracy of 85%. A neuronal network approach for scan feature recognition achieved 82% and an auto-encoder approach 85% balanced accuracy. Overall applicability showed need for improvement.ConclusionContactless in vivo OCT scanning has shown to achieve high values of accuracy for RTD, supporting what has well been described for ex vivo OCT brain tumor scanning, complementing current intraoperative techniques and even exceeding them in accuracy, while not yet in applicability

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    CDK7 Predicts Worse Outcome in Head and Neck Squamous-Cell Cancer

    No full text
    HNSCC is the sixth most common cancer worldwide and the prognosis is still poor. Here, we investigated the prognostic implications of CDK7 and pMED1. Both proteins affect transcription, and their expression is altered throughout different tumor entities. pMED1 is phosphorylated by CDK7. Importantly, CDK7 and MED1 have been ascribed prognostic implications by various studies. However, their prognostic value in head and neck squamous-cell cancer (HNSCC) remains elusive. We applied immunohistochemical staining of CDK7 and pMED1 on our large and clinically well-characterized HNSCC tissue cohort comprising 419 patients. Software-aided quantification of staining intensity was performed as a measure of protein expression. The following results were linked to the clinicopathological features of our cohort and correlated in different tissue types (primary tumor, lymph node metastasis, distant metastasis, recurrence). Upregulation CDK7 was associated with worse 5-year overall survival as well as disease-free survival in HNSCC while being independent of other known prognostic factors such as p16-status. Also, CDK7 expression was significantly elevated in immune cell infiltrated tumors. In HNSCC CDK7 might serve as a novel prognostic marker to indicate the prognosis of patients. Furthermore, in vitro studies proved the feasibility of CDK7 inhibition with attenuating effects on cell proliferation underlining its remarkable translational potential for future therapeutic regimes

    EVI1 as a Marker for Lymph Node Metastasis in HNSCC

    No full text
    Background: HNSCC is the sixth most common cancer in humans and has still a very poor prognosis. The treatment methods so far are very often associated with mutilation and impairment in the quality of life. Except for p16 expression, there are no reliable prognostic markers in HNSCC so far. Ecotropic Viral Integration Site 1 (EVI1) is a well-described prognostic marker in leukemia and different types of solid cancers. In these, a high EVI1 expression is associated with a poor prognosis. In HNSCC, it is not known so far if EVI1 has any prognostic relevance. Materials and Methods: We used our representative tissue cohort of 389 primary HNSCCs, of which 57.2% had one or more lymph node metastases. Here EVI1 expression was analyzed via immunohistochemistry and correlated with the clinical characteristics of these patients. Results: Although in HNSCC EVI1 expression does not predict poor survival, a high EVI1 expression in the primary tumor correlates with a lymph node metastatic disease. Conclusion: Consequently, EVI1 may serve as a biomarker to predict an occult lymph node metastasis in a clinical nodal negative (cN0) HNSCC

    TRIM24 Expression as an Independent Biomarker for Prognosis and Tumor Recurrence in HNSCC

    No full text
    Background: Head and neck squamous cell carcinomas (HNSCCs) are among the most common cancers in humans worldwide and have a rather poor prognosis. TRIM24 has various intracellular functions and was identified in other cancer entities as a poor prognostic factor for patients. Methods: The expression of TRIM24 was evaluated by using immunohistochemistry. We used a large and representative cohort of 341 HNSCC patients. Data derived from immunohistochemistry evaluation was correlated with clinicopathological data from HNSCC patients. Results: The TRIM24 expression in HNSCC primary tumors is negatively correlated with the p16 status of the tumor tissues. Primary tumors of patients who developed a local recurrence were significantly more often positive for TRIM24. Kaplan–Meier analyses and Cox regression showed that patients with TRIM24 expressing tumors have significantly worse overall survival and progression-free survival and that TRIM24 expression is independent of other established risk factors. Conclusions: TRIM24 might be a new prognostic biomarker for the survival prognosis and early detection of local recurrences in HNSCC patients. It could be used for risk stratification of HNSCC patients and to identify those patients who are more prone to develop a local recurrence and therefore could profit from more frequent follow-up examinations

    CDK19 as a Potential HPV-Independent Biomarker for Recurrent Disease in HNSCC

    No full text
    The Mediator complex is a central integrator of transcription and a hub for the regulation of gene expression. Cyclin dependent kinase (CDK) 19 and its paralog CDK8 are part of its kinase domain and contribute to cancer progression in different cancer entities. STAT1 is an important immune modulator and a downstream substrate of CDK8/CDK19 mediated phosphorylation. So far, little is known about CDK19's role in head and neck squamous cell carcinoma (HNSCC) progression, its link to STAT1 activity, and related immune modulation. Immunohistochemistry for CDK19, activated pSTAT1, and PD-L1, known to be affected by STAT1, was conducted on samples of 130 primary tumors, 71 local recurrences, 32 lymph node metastases, and 25 distant metastases of HNSCC. Compared to primary tumors, CDK19 is overexpressed in local recurrences and distant metastases as well as in primary tumors that developed local recurrence after initial therapy. Patients with high-CDK19-expressing primary tumors have a significantly shorter disease-free survival. CDK19 expression correlates with pSTAT1 expression in primary tumors associated with recurrent disease, local recurrent tumors, lymph node metastases, and distant metastases. pSTAT1 expression correlates with PD-L1 expression in recurrent tumors. Our findings identify CDK19 as a potential biomarker in HNSCC to predict recurrent disease and support recent developments to target CDK19 and its paralog CDK8 in advanced cancer

    Table_1_The neurosurgical benefit of contactless in vivo optical coherence tomography regarding residual tumor detection: A clinical study.docx

    No full text
    PurposeIn brain tumor surgery, it is crucial to achieve complete tumor resection while conserving adjacent noncancerous brain tissue. Several groups have demonstrated that optical coherence tomography (OCT) has the potential of identifying tumorous brain tissue. However, there is little evidence on human in vivo application of this technology, especially regarding applicability and accuracy of residual tumor detection (RTD). In this study, we execute a systematic analysis of a microscope integrated OCT-system for this purpose.Experimental designMultiple 3-dimensional in vivo OCT-scans were taken at protocol-defined sites at the resection edge in 21 brain tumor patients. The system was evaluated for its intraoperative applicability. Tissue biopsies were obtained at these locations, labeled by a neuropathologist and used as ground truth for further analysis. OCT-scans were visually assessed with a qualitative classifier, optical OCT-properties were obtained and two artificial intelligence (AI)-assisted methods were used for automated scan classification. All approaches were investigated for accuracy of RTD and compared to common techniques.ResultsVisual OCT-scan classification correlated well with histopathological findings. Classification with measured OCT image-properties achieved a balanced accuracy of 85%. A neuronal network approach for scan feature recognition achieved 82% and an auto-encoder approach 85% balanced accuracy. Overall applicability showed need for improvement.ConclusionContactless in vivo OCT scanning has shown to achieve high values of accuracy for RTD, supporting what has well been described for ex vivo OCT brain tumor scanning, complementing current intraoperative techniques and even exceeding them in accuracy, while not yet in applicability.</p
    corecore