17 research outputs found

    Physiology and Pathology of Drug Hypersensitivity: Role of Human Leukocyte Antigens

    Get PDF
    Drug Hypersensitivity reactions can be distinguished in adverse drug events and adverse drug reactions. They represent a major problem in the medical scheme, since they are often underestimated. Pharmacogenetic analysis demonstrated significant associations between emerging hypersensitivity reactions and distinct genes of the HLA complex. HLA-mediated hypersensitivity reactions particularly affect skin and liver, however, impairment of the bone marrow and kidney function could also be observed. These life threatening medical conditions can be attributed to the activation of autologous drug-specific T-cells. Severe drug hypersensitivity reactions that resemble acute GvHD are linked to certain specific HLA alleles. The most common hypersensitivity reactions occur after the treatment of HLA-B*57:01+ HIV patients with abacavir and HLA-A*31:01+ or B*15:02+ epileptic patients with carbamazepine (CBZ)

    mir-181A/B-1 controls thymic selection of treg cells and tunes their suppressive capacity

    Get PDF
    The interdependence of selective cues during development of regulatory T cells (Treg cells) in the thymus and their suppressive function remains incompletely understood. Here, we analyzed this interdependence by taking advantage of highly dynamic changes in expression of microRNA 181 family members miR-181a-1 and miR-181b-1 (miR-181a/b-1) during late T-cell development with very high levels of expression during thymocyte selection, followed by massive down-regulation in the periphery. Loss of miR-181a/b-1 resulted in inefficient de novo generation of Treg cells in the thymus but simultaneously permitted homeostatic expansion in the periphery in the absence of competition. Modulation of T-cell receptor (TCR) signal strength in vivo indicated that miR-181a/b-1 controlled Treg-cell formation via establishing adequate signaling thresholds. Unexpectedly, miR-181a/b-1–deficient Treg cells displayed elevated suppressive capacity in vivo, in line with elevated levels of cytotoxic T-lymphocyte–associated 4 (CTLA-4) protein, but not mRNA, in thymic and peripheral Treg cells. Therefore, we propose that intrathymic miR-181a/b-1 controls development of Treg cells and imposes a developmental legacy on their peripheral function

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer‐reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state‐of‐the‐art handbook for basic and clinical researchers.DFG, 389687267, Kompartimentalisierung, Aufrechterhaltung und Reaktivierung humaner Gedächtnis-T-Lymphozyten aus Knochenmark und peripherem BlutDFG, 80750187, SFB 841: Leberentzündungen: Infektion, Immunregulation und KonsequenzenEC/H2020/800924/EU/International Cancer Research Fellowships - 2/iCARE-2DFG, 252623821, Die Rolle von follikulären T-Helferzellen in T-Helferzell-Differenzierung, Funktion und PlastizitätDFG, 390873048, EXC 2151: ImmunoSensation2 - the immune sensory syste

    Molecular and cellular control of intrathymic T-cell development

    No full text
    T-cell development is a highly dynamic and stepwise process comprimising T lineage commitment, T-cell receptor (TCR) gene rearrangements and subsequent selection. From a quantitative point of view, only a few hundred progenitor cells migrate from the bone marrow into the thymus. Developing thymocytes (termed double negative (DN), CD4-CD8-) can be further divided into DN1-4 cells based on the expression of CD25 and CD44. These developmental events are interspersed by proliferative bursts which ultimately lead to the generation of millions of double positive (DP, CD4+CD8+) thymocytes that then undergo selection. As a consequence, a proportion of naïve T-cells evolves to ensure adaptive, but not autoreactive immunity. Previous studies of our lab focused on the quantification of thymus colonization and identified thymus entry to be dependent on expression of the chemokine receptors CCR7 and CCR9 (Krueger et al., 2010; Ziętara et al., 2015). CCR7/9 double knockout (DKO) mice are almost completely devoid of the most immature thymocyte populations (DN1 and DN2), but show near normal DN3 cellularity. Interestingly, a similar defect during early development but a virtually complete recovery of later stages and total thymocyte numbers was also observed in thymi of miR-17~92 deficient mice. Here, a failure of prethymic IL-7 signaling dampens early T-cell development (Regelin et al., 2015). For this reason, we hypothesized a tight regulation of thymocyte population size through alterations in the underlying cell cycle kinetics. In this thesis, we employed in vivo single- and dual-nucleoside pulse labeling combined with determination of DNA replication over time in different WT thymocyte subsets at steady-state. Based on this, we assessed alterations in cell cycle kinetics of CCR7/9 and miR-17~92 defcicient mice and identified compensatory mechanisms of thymocytes on the level of cell cycle phase distribution and cell cycle speed. In addition, single-cell RNA sequencing helped to obtain information on cell cycle dynamics of early thymocyte subsets, exemplarily shown for WT and CCR7/9 DKO mice. Lastly, we performed cell cycle analyses in a model of endogenous thymic repair upon sublethal total body irradiation which provided insight into intrathymic cell cycle regulation as an adjustable system to re-establish normal thymus cellularity. In the second part of the thesis, we addressed the role of miR-21 in the thymus. In various studies, we and others identified miRNAs as key posttranscriptional regulators of the immune system and especially for T-cell development (Regelin et al. 2015; Mildner et al. 2017; Li et al. 2007; Ebert et al. 2009; Ziętara et al. 2013; Schaffert et al. 2015). The dynamic expression of miR-21 during T-cell development (Neilson et al. 2007; Kirigin et al. 2012; Kuchen et al. 2010) prompted us to hypothesize that miR-21 has a regulatory function in the thymus. A miR 21-knockout mouse model allowed us to study the role of this miRNA for the development of T-cells in the thymus and the maintenance of T-cells in the periphery. In addition, we performed competitive bone marrow chimera experiments in the context of miR-21 deficiency and overexpression. Further insights were provided by exploring the function of miR-21 in negative selection in vivo as well as in T-cell differentiation in coculture experiments in vitro. To unravel implications of miR-21 to regulate cellular stress responses, we assessed the contribution of miR-21 in a model of endogenous regeneration of the thymus after sublethal irradiation. We could not provide evidence for a prominent role for miR-21 during T-cell development. Together, our experiments revealed that miR-21 is largely dispensable for physiologic T-cell development despite high and dynamic expression in the thymus (Kunze Schumacher et al., 2018). The apparent discrepancy between dynamic expression but lack of a regulatory function in the thymus led us to conclude that miR-21 is rather fine tuning T-cell responses than controlling a developmental event

    The role of microRNAs in development and function of regulatory T cells : lessons for a better understanding of microRNA biology

    No full text
    MicroRNAs (miRNAs) have emerged as critical posttranscriptional regulators of the immune system, including function and development of regulatory T (Treg) cells. Although this critical role has been firmly demonstrated through genetic models, key mechanisms of miRNA function in vivo remain elusive. Here, we review the role of miRNAs in Treg cell development and function. In particular, we focus on the question what the study of miRNAs in this context reveals about miRNA biology in general, including context-dependent function and the role of individual targets vs. complex co-targeting networks. In addition, we highlight potential technical pitfalls and state-of-the-art approaches to improve the mechanistic understanding of miRNA biology in a physiological context

    9 to 5 feces on fart and crass : subverting society's segregative structures

    Get PDF
    [ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] In resistance to oligarchical structures, which deny access and influence nearly every aspect of our society, I've created an inventory of work, which utilizes and embraces archetypes and pop culture motifs as a means to critique authoritative figures and institutions, and examine marginalizing structures. The works exist on paper, in zines, on posters, buttons, pins and other ephemera as a way of making the images affordable (and available) to the working and middle class. While these works are meaningful on their own, they have become secondary to the method in which they are displayed and sold. These images -- ranging from satirical repudiations of political and celebrity icons, to ambivalent reactions fueled by sports-based fandom -- reflect a desire for connectedness and well-being, concepts which are all summarized in the form of a transient, white cube.Includes bibliographical references (pages 124-128)

    Modeling the dynamics of T-cell development in the thymus

    No full text
    The thymus hosts the development of a specific type of adaptive immune cells called T cells. T cells orchestrate the adaptive immune response through recognition of antigen by the highly variable T-cell receptor (TCR). T-cell development is a tightly coordinated process comprising lineage commitment, somatic recombination of Tcr gene loci and selection for functional, but non-self-reactive TCRs, all interspersed with massive proliferation and cell death. Thus, the thymus produces a pool of T cells throughout life capable of responding to virtually any exogenous attack while preserving the body through self-tolerance. The thymus has been of considerable interest to both immunologists and theoretical biologists due to its multi-scale quantitative properties, bridging molecular binding, population dynamics and polyclonal repertoire specificity. Here, we review experimental strategies aimed at revealing quantitative and dynamic properties of T-cell development and how they have been implemented in mathematical modeling strategies that were reported to help understand the flexible dynamics of the highly dividing and dying thymic cell populations. Furthermore, we summarize the current challenges to estimating in vivo cellular dynamics and to reaching a next- generation multi-scale picture of T-cell development

    A Micropolymorphism Altering the Residue Triad 97/114/156 Determines the Relative Levels of Tapasin Independence and Distinct Peptide Profiles for HLA-A*24 Allotypes

    No full text
    While many HLA class I molecules interact directly with the peptide loading complex (PLC) for conventional loading of peptides certain class I molecules are able to present peptides in a way that circumvents the PLC components. We investigated micropolymorphisms at position 156 of HLA-A*24 allotypes and their effects on PLC dependence for assembly and peptide binding specificities. HLA-A*24:06156Trp and HLA-A*24:13156Leu showed high levels of cell surface expression while HLA-A*24:02156Gln was expressed at low levels in tapasin deficient cells. Peptides presented by these allelic variants showed distinct differences in features and repertoire. Immunoprecipitation experiments demonstrated all the HLA-A*24/156 variants to associate at similar levels with tapasin when present. Structurally, HLA-A*24:02 contains the residue triad Met97/His114/Gln156 and a Trp156 or Leu156 polymorphism provides tapasin independence by stabilizing these triad residues, thus generating an energetically stable and a more peptide receptive environment. Micropolymorphisms at position 156 can influence the generic peptide loading pathway for HLA-A*24 by altering their tapasin dependence for peptide selection. The trade-off for this tapasin independence could be the presentation of unusual ligands by these alleles, imposing significant risk following hematopoietic stem cell transplantation (HSCT)

    HLA-E: Presentation of a Broader Peptide Repertoire Impacts the Cellular Immune Response—Implications on HSCT Outcome

    Get PDF
    The HLA-E locus encodes a nonclassical class Ib molecule that serves many immune functions from inhibiting NK cells to activating CTLs. Structural analysis of HLA-E/NKG2A complexes visualized fine-tuning of protective immune responses through AA interactions between HLA-E, the bound peptide, and NKG2A/CD94. A loss of cellular protection through abrogation of the HLA-E/NKG2A engagement is dependent on the HLA-E bound peptide. The role of HLA-E in posttransplant outcomes is not well understood but might be attributed to its peptide repertoire. To investigate the self-peptide repertoire of HLA-E∗01:01 in the absence of protective HLA class I signal peptides, we utilized soluble HLA technology in class I negative LCL cells in order to characterize HLA-E∗01:01-bound ligands by mass-spectrometry. To understand the immunological impact of these analyzed ligands on NK cell reactivity, we performed cellular assays. Synthesized peptides were loaded onto recombinant T2 cells expressing HLA-E∗01:01 molecules and applied in cytotoxicity assays using the leukemia derived NK cell line (NKL) as effector. HLA-E in complex with the self-peptides demonstrated a shift towards cytotoxicity and a loss of cell protection. Our data highlights the fact that the HLA-E-peptidome is not as restricted as previously thought and support the suggestion of a posttransplant role for HLA-E
    corecore