28 research outputs found

    Acoustic signalling reflects personality in a social mammal

    Get PDF
    Social interactions among individuals are often mediated through acoustic signals. If acoustic signals are consistent and related to an individual's personality, these consistent individual differences in signalling may be an important driver in social interactions. However, few studies in non-human mammals have investigated the relationship between acoustic signalling and personality. Here we show that acoustic signalling rate is repeatable and strongly related to personality in a highly social mammal, the domestic pig (Sus scrofa domestica). Furthermore, acoustic signalling varied between environments of differing quality, with males from a poor-quality environment having a reduced vocalization rate compared with females and males from an enriched environment. Such differences may be mediated by personality with pigs from a poor-quality environment having more reactive and more extreme personality scores compared with pigs from an enriched environment. Our results add to the evidence that acoustic signalling reflects personality in a non-human mammal. Signals reflecting personalities may have far reaching consequences in shaping the evolution of social behaviours as acoustic communication forms an integral part of animal societies

    The Behavioural Response of Australian Fur Seals to Motor Boat Noise

    Get PDF
    Australian fur seals breed on thirteen islands located in the Bass Strait, Australia. Land access to these islands is restricted, minimising human presence but boat access is still permissible with limitations on approach distances. Thirty-two controlled noise exposure experiments were conducted on breeding Australian fur seals to determine their behavioural response to controlled in-air motor boat noise on Kanowna Island (39°10′S, 146°18′E). Our results show there were significant differences in the seals' behaviour at low (64–70 dB) versus high (75–85 dB) sound levels, with seals orientating themselves towards or physically moving away from the louder boat noise at three different sound levels. Furthermore, seals responded more aggressively with one another and were more alert when they heard louder boat noise. Australian fur seals demonstrated plasticity in their vocal responses to boat noise with calls being significantly different between the various sound intensities and barks tending to get faster as the boat noise got louder. These results suggest that Australian fur seals on Kanowna Island show behavioural disturbance to high level boat noise. Consequently, it is recommended that an appropriate level of received boat sound emissions at breeding fur seal colonies be below 74 dB and that these findings be taken into account when evaluating appropriate approach distances and speed limits for boats

    Environmental noise reduces predation rate in an aquatic invertebrate

    Get PDF
    Noise is one of a wide range of disturbances associated with human activities that have been shown to have detrimental impacts on a wide range of species, from montane regions to the deep marine environment. Noise may also have community-level impacts via predator–prey interactions, thus jeopardising the stability of trophic networks. However, the impact of noise on freshwater ecosystems is largely unknown. Even more so is the case of insects, despite their crucial role in trophic networks. Here, we study the impact of underwater noise on the predatory functional response of damselfly larvae. We compared the feeding rates of larvae under anthropogenic noise, natural noise, and silent conditions. Our results suggest that underwater noise (pooling the effects of anthropogenic noise and natural noise) decreases the feeding rate of damselflies significantly compared to relatively silent conditions. In particular, natural noise increased the handling time significantly compared to the silent treatment, thus reducing the feeding rate. Unexpectedly, feeding rates under anthropogenic noise were not reduced significantly compared to silent conditions. This study suggests that noise per se may not necessarily have negative impacts on trophic interactions. Instead, the impact of noise on feeding rates may be explained by the presence of nonlinearities in acoustic signals, which may be more abundant in natural compared to anthropogenic noise. We conclude by highlighting the importance of studying a diversity of types of acoustic pollution, and encourage further work regarding trophic interactions with insects using a functional response approach

    Communication in the Third Dimension: Song Perch Height of Rivals Affects Singing Response in Nightingales

    Get PDF
    Many animals use long-range signals to compete over mates and resources. Optimal transmission can be achieved by choosing efficient signals, or by choosing adequate signalling perches and song posts. High signalling perches benefit sound transmission and reception, but may be more risky due to exposure to airborne predators. Perch height could thus reflect male quality, with individuals signalling at higher perches appearing as more threatening to rivals. Using playbacks on nightingales (Luscinia megarhynchos), we simulated rivals singing at the same height as residents, or singing three metres higher. Surprisingly, residents increased song output stronger, and, varying with future pairing success, overlapped more songs of the playback when rivals were singing at the same height than when they were singing higher. Other than expected, rivals singing at the same height may thus be experienced as more threatening than rivals singing at higher perches. Our study provides new evidence that territorial animals integrate information on signalling height and thus on vertical cues in their assessment of rivals

    Using the canary genome to decipher the evolution of hormone-sensitive gene regulation in seasonal singing birds

    Get PDF

    Acoustic signalling reflects personality in a social mammal

    Get PDF

    Positive and negative contexts predict duration of pig vocalisations

    Get PDF

    Vocal interactions in common nightingales <i>(Luscinia megarhynchos)</i>: males take it easy after pairing.

    No full text
    Seasonal patterns of bird song have been studied intensively with a focus on individual males. However, little is known about seasonal patterns of singing during vocal interactions between males. Vocal interactions have been shown to be important in sexual selection as males may signal aspects of motivation or quality. Here, we investigated in nightingales (Luscinia megarhynchos) whether a male's behaviour in vocal interactions at different stages of the breeding season is influenced by its mating status. We examined how males that differ in their subsequent mating success respond to a non-interactive, nocturnal playback presented during the period of mate attraction and subsequently during the egg-laying period. We found that mated males overlapped fewer songs and had a lower song rate during the egg-laying period compared to their responses during the mate-attraction period, whereas unpaired males did not vary in their responses between the two periods. Our results suggest that mating status is a key factor affecting singing behaviour in vocal interactions and that a time-specific singing pattern like song overlapping is used flexibly during vocal interactions. Because song overlapping is thought to be a signal of aggression in male-male vocal interactions, it seems that males vary the level of aggression in vocal interactions according to their mating status and to the stage in the breeding season
    corecore