1,302 research outputs found

    Extraction of Beam-Spin Asymmetries from the Hard Exclusive πâș Channel Off Protons in a Wide Range of Kinematics

    Get PDF
    We have measured beam-spin asymmetries to extract the sinϕ moment ALUsinϕ from the hard exclusive e→p → e\u27nπ+ reaction above the resonance region, for the first time with nearly full coverage from forward to backward angles in the center of mass. The ALUsinϕ moment has been measured up to 6.6  GeV2 in -t, covering the kinematic regimes of generalized parton distributions (GPD) and baryon-to-meson transition distribution amplitudes (TDA) at the same time. The experimental results in very forward kinematics demonstrate the sensitivity to chiral-odd and chiral-even GPDs. In very backward kinematics where the TDA framework is applicable, we found ALUsinϕ to be negative, while a sign change was observed near 90° in the center of mass. The unique results presented in this Letter will provide critical constraints to establish reaction mechanisms that can help to further develop the GPD and TDA frameworks

    A new method for the estimation of variance matrix with prescribed zeros in nonlinear mixed effects models

    Get PDF
    We propose a new method for the Maximum Likelihood Estimator (MLE) of nonlinear mixed effects models when the variance matrix of Gaussian random effects has a prescribed pattern of zeros (PPZ). The method consists in coupling the recently developed Iterative Conditional Fitting (ICF) algorithm with the Expectation Maximization (EM) algorithm. It provides positive definite estimates for any sample size, and does not rely on any structural assumption on the PPZ. It can be easily adapted to many versions of EM.Comment: Accepted for publication in Statistics and Computin

    Matrices commuting with a given normal tropical matrix

    Get PDF
    Consider the space MnnorM_n^{nor} of square normal matrices X=(xij)X=(x_{ij}) over RâˆȘ{−∞}\mathbb{R}\cup\{-\infty\}, i.e., −∞≀xij≀0-\infty\le x_{ij}\le0 and xii=0x_{ii}=0. Endow MnnorM_n^{nor} with the tropical sum ⊕\oplus and multiplication ⊙\odot. Fix a real matrix A∈MnnorA\in M_n^{nor} and consider the set Ω(A)\Omega(A) of matrices in MnnorM_n^{nor} which commute with AA. We prove that Ω(A)\Omega(A) is a finite union of alcoved polytopes; in particular, Ω(A)\Omega(A) is a finite union of convex sets. The set ΩA(A)\Omega^A(A) of XX such that A⊙X=X⊙A=AA\odot X=X\odot A=A is also a finite union of alcoved polytopes. The same is true for the set Ωâ€Č(A)\Omega'(A) of XX such that A⊙X=X⊙A=XA\odot X=X\odot A=X. A topology is given to MnnorM_n^{nor}. Then, the set ΩA(A)\Omega^{A}(A) is a neighborhood of the identity matrix II. If AA is strictly normal, then Ωâ€Č(A)\Omega'(A) is a neighborhood of the zero matrix. In one case, Ω(A)\Omega(A) is a neighborhood of AA. We give an upper bound for the dimension of Ωâ€Č(A)\Omega'(A). We explore the relationship between the polyhedral complexes spanAspan A, spanXspan X and span(AX)span (AX), when AA and XX commute. Two matrices, denoted A‟\underline{A} and Aˉ\bar{A}, arise from AA, in connection with Ω(A)\Omega(A). The geometric meaning of them is given in detail, for one example. We produce examples of matrices which commute, in any dimension.Comment: Journal versio

    Determinisitic Optical Fock State Generation

    Get PDF
    We present a scheme for the deterministic generation of N-photon Fock states from N three-level atoms in a high-finesse optical cavity. The method applies an external laser pulsethat generates an NN-photon output state while adiabatically keeping the atom-cavity system within a subspace of optically dark states. We present analytical estimates of the error due to amplitude leakage from these dark states for general N, and compare it with explicit results of numerical simulations for N \leq 5. The method is shown to provide a robust source of N-photon states under a variety of experimental conditions and is suitable for experimental implementation using a cloud of cold atoms magnetically trapped in a cavity. The resulting N-photon states have potential applications in fundamental studies of non-classical states and in quantum information processing.Comment: 25 pages, 9 figure

    Snow petrel stomach-oil deposits as a new biological archive of Antarctic sea ice

    Get PDF
    Where snow petrels forage is predominantly a function of sea ice. They spit stomach oil in defence, and accumulated deposits at nesting sites are providing new opportunities to reconstruct their diet, and, in turn, the sea-ice environment over past millennia

    Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics

    Full text link
    In this article, we analyze the third of three papers, in which Einstein presented his quantum theory of the ideal gas of 1924-1925. Although it failed to attract the attention of Einstein's contemporaries and although also today very few commentators refer to it, we argue for its significance in the context of Einstein's quantum researches. It contains an attempt to extend and exhaust the characterization of the monatomic ideal gas without appealing to combinatorics. Its ambiguities illustrate Einstein's confusion with his initial success in extending Bose's results and in realizing the consequences of what later became to be called Bose-Einstein statistics. We discuss Einstein's motivation for writing a non-combinatorial paper, partly in response to criticism by his friend Ehrenfest, and we paraphrase its content. Its arguments are based on Einstein's belief in the complete analogy between the thermodynamics of light quanta and of material particles and invoke considerations of adiabatic transformations as well as of dimensional analysis. These techniques were well-known to Einstein from earlier work on Wien's displacement law, Planck's radiation theory, and the specific heat of solids. We also investigate the possible role of Ehrenfest in the gestation of the theory.Comment: 57 pp
    • 

    corecore