39 research outputs found

    Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e σB regulon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The opportunistic food-borne gram-positive pathogen <it>Listeria monocytogenes </it>can exist as a free-living microorganism in the environment and grow in the cytoplasm of vertebrate and invertebrate cells following infection. The general stress response, controlled by the alternative sigma factor, σ<sup>B</sup>, has an important role for bacterial survival both in the environment and during infection. We used quantitative real-time PCR analysis and immuno-blot analysis to examine σ<sup>B </sup>expression during growth of <it>L. monocytogenes </it>EGD-e. Whole genome-based transcriptional profiling was used to identify σ<sup>B</sup>-dependent genes at different growth phases.</p> <p>Results</p> <p>We detected 105 σ<sup>B</sup>-positively regulated genes and 111 genes which appeared to be under negative control of σ<sup>B </sup>and validated 36 σ<sup>B</sup>-positively regulated genes <it>in vivo </it>using a reporter gene fusion system.</p> <p>Conclusion</p> <p>Genes comprising the σ<sup>B </sup>regulon encode solute transporters, novel cell-wall proteins, universal stress proteins, transcriptional regulators and include those involved in osmoregulation, carbon metabolism, ribosome- and envelope-function, as well as virulence and niche-specific survival genes such as those involved in bile resistance and exclusion. Ten of the σ<sup>B</sup>-positively regulated genes of <it>L. monocytogenes </it>are absent in <it>L. innocua</it>. A total of 75 σ<sup>B</sup>-positively regulated listerial genes had homologs in <it>B. subtilis</it>, but only 33 have been previously described as being σ<sup>B</sup>-regulated in <it>B. subtilis </it>even though both species share a highly conserved σ<sup>B</sup>-dependent consensus sequence. A low overlap of genes may reflects adaptation of these bacteria to their respective environmental conditions.</p

    Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement.

    Get PDF
    Formation and segregation of cell lineages forming the heart have been studied extensively but the underlying gene regulatory networks and epigenetic changes driving cell fate transitions during early cardiogenesis are still only partially understood. Here, we comprehensively characterize mouse cardiac progenitor cells (CPCs) marked by Nkx2-5 and Isl1 expression from E7.5 to E9.5 using single-cell RNA sequencing and transposase-accessible chromatin profiling (ATAC-seq). By leveraging on cell-to-cell transcriptome and chromatin accessibility heterogeneity, we identify different previously unknown cardiac subpopulations. Reconstruction of developmental trajectories reveal that multipotent Isl1+ CPC pass through an attractor state before separating into different developmental branches, whereas extended expression of Nkx2-5 commits CPC to an unidirectional cardiomyocyte fate. Furthermore, we show that CPC fate transitions are associated with distinct open chromatin states critically depending on Isl1 and Nkx2-5. Our data provide a model of transcriptional and epigenetic regulations during cardiac progenitor cell fate decisions at single-cell resolution

    Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes

    Get PDF
    BACKGROUND: Listeria monocytogenes is a food-borne pathogen that causes infections with a high-mortality rate and has served as an invaluable model for intracellular parasitism. Here, we report complete genome sequences for two L. monocytogenes strains belonging to serotype 4a (L99) and 4b (CLIP80459), and transcriptomes of representative strains from lineages I, II, and III, thereby permitting in-depth comparison of genome- and transcriptome -based data from three lineages of L. monocytogenes. Lineage III, represented by the 4a L99 genome is known to contain strains less virulent for humans. RESULTS: The genome analysis of the weakly pathogenic L99 serotype 4a provides extensive evidence of virulence gene decay, including loss of several important surface proteins. The 4b CLIP80459 genome, unlike the previously sequenced 4b F2365 genome harbours an intact inlB invasion gene. These lineage I strains are characterized by the lack of prophage genes, as they share only a single prophage locus with other L. monocytogenes genomes 1/2a EGD-e and 4a L99. Comparative transcriptome analysis during intracellular growth uncovered adaptive expression level differences in lineages I, II and III of Listeria, notable amongst which was a strong intracellular induction of flagellar genes in strain 4a L99 compared to the other lineages. Furthermore, extensive differences between strains are manifest at levels of metabolic flux control and phosphorylated sugar uptake. Intriguingly, prophage gene expression was found to be a hallmark of intracellular gene expression. Deletion mutants in the single shared prophage locus of lineage II strain EGD-e 1/2a, the lma operon, revealed severe attenuation of virulence in a murine infection model. CONCLUSION: Comparative genomics and transcriptome analysis of L. monocytogenes strains from three lineages implicate prophage genes in intracellular adaptation and indicate that gene loss and decay may have led to the emergence of attenuated lineages

    Genome-Wide Identification of Small RNAs in the Opportunistic Pathogen Enterococcus faecalis V583

    Get PDF
    Small RNA molecules (sRNAs) are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sRNAs in the Gram positive opportunistic pathogen Enterococcus faecalis. We characterized 11 sRNAs by tiling microarray analysis, 5′ and 3′ RACE-PCR, and Northern blot analysis. Six sRNAs were specifically expressed at exponential phase, two sRNAs were observed at stationary phase, and three were detected during both phases. Searches of putative functions revealed that three of them (EFA0080_EFA0081 and EFB0062_EFB0063 on pTF1 and pTF2 plasmids, respectively, and EF0408_EF04092 located on the chromosome) are similar to antisense RNA involved in plasmid addiction modules. Moreover, EF1097_EF1098 shares strong homologies with tmRNA (bi-functional RNA acting as both a tRNA and an mRNA) and EF2205_EF2206 appears homologous to 4.5S RNA member of the Signal Recognition Particle (SRP) ribonucleoprotein complex. In addition, proteomic analysis of the ΔEF3314_EF3315 sRNA mutant suggests that it may be involved in the turnover of some abundant proteins. The expression patterns of these transcripts were evaluated by tiling array hybridizations performed with samples from cells grown under eleven different conditions some of which may be encountered during infection. Finally, distribution of these sRNAs among genome sequences of 54 E. faecalis strains was assessed. This is the first experimental genome-wide identification of sRNAs in E. faecalis and provides impetus to the understanding of gene regulation in this important human pathogen

    Comparative Analysis of Plasmids in the Genus Listeria

    Get PDF
    Kuenne C, Voget S, Pischimarov J, et al. Comparative Analysis of Plasmids in the Genus Listeria. PLOS ONE. 2010;5(9): e12511.Background: We sequenced four plasmids of the genus Listeria, including two novel plasmids from L. monocytogenes serotype 1/2c and 7 strains as well as one from the species L. grayi. A comparative analysis in conjunction with 10 published Listeria plasmids revealed a common evolutionary background. Principal Findings: All analysed plasmids share a common replicon-type related to theta-replicating plasmid pAMbeta1. Nonetheless plasmids could be broadly divided into two distinct groups based on replicon diversity and the genetic content of the respective plasmid groups. Listeria plasmids are characterized by the presence of a large number of diverse mobile genetic elements and a commonly occurring translesion DNA polymerase both of which have probably contributed to the evolution of these plasmids. We detected small non-coding RNAs on some plasmids that were homologous to those present on the chromosome of L. monocytogenes EGD-e. Multiple genes involved in heavy metal resistance (cadmium, copper, arsenite) as well as multidrug efflux (MDR, SMR, MATE) were detected on all listerial plasmids. These factors promote bacterial growth and survival in the environment and may have been acquired as a result of selective pressure due to the use of disinfectants in food processing environments. MDR efflux pumps have also recently been shown to promote transport of cyclic diadenosine monophosphate (c-di-AMP) as a secreted molecule able to trigger a cytosolic host immune response following infection. Conclusions: The comparative analysis of 14 plasmids of genus Listeria implied the existence of a common ancestor. Ubiquitously-occurring MDR genes on plasmids and their role in listerial infection now deserve further attention

    i2dash: Creation of Flexible, Interactive, and Web-based Dashboards for Visualization of Omics Data

    No full text
    Data visualization and interactive data exploration are important aspects of illustrating complex concepts and results from analyses of omics data. A suitable visualization has to be intuitive and accessible. Web-based dashboards have become popular tools for the arrangement, consolidation, and display of such visualizations. However, the combination of automated data processing pipelines handling omics data and dynamically generated, interactive dashboards is poorly solved. Here, we present i2dash, an R package intended to encapsulate functionality for the programmatic creation of customized dashboards. It supports interactive and responsive (linked) visualizations across a set of predefined graphical layouts. i2dash addresses the needs of data analysts/software developers for a tool that is compatible and attachable to any R-based analysis pipeline, thereby fostering the separation of data visualization on one hand and data analysis tasks on the other hand. In addition, the generic design of i2dash enables the development of modular extensions for specific needs. As a proof of principle, we provide an extension of i2dash optimized for single-cell RNA sequencing analysis, supporting the creation of dashboards for the visualization needs of such experiments. Equipped with these features, i2dash is suitable for extensive use in large-scale sequencing/bioinformatics facilities. Along this line, we provide i2dash as a containerized solution, enabling a straightforward large-scale deployment and sharing of dashboards using cloud services. i2dash is freely available via the R package archive CRAN (https://CRAN.R-project.org/package=i2dash)

    Boletín de Segovia: Número 89 - 1915 julio 26

    No full text
    Copia digital. Madrid : Ministerio de Cultura. Subdirección General de Coordinación Bibliotecaria, 200
    corecore