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Single cell RNA-seq and ATAC-seq analysis of
cardiac progenitor cell transition states and lineage
settlement

Guangshuai Jia!, Jens Preussner'?, Xi Chen3, Stefan Guenther2, Xuejun Yuan'2, Michail Yekelchyk'2,
Carsten Kuenne'?, Mario Looso'4, Yonggang Zhou', Sarah Teichmann® 34> & Thomas Braun'?

Formation and segregation of cell lineages forming the heart have been studied extensively
but the underlying gene regulatory networks and epigenetic changes driving cell fate tran-
sitions during early cardiogenesis are still only partially understood. Here, we comprehen-
sively characterize mouse cardiac progenitor cells (CPCs) marked by Nkx2-5 and Isl1
expression from E7.5 to E9.5 using single-cell RNA sequencing and transposase-accessible
chromatin profiling (ATAC-seq). By leveraging on cell-to-cell transcriptome and chromatin
accessibility heterogeneity, we identify different previously unknown cardiac subpopulations.
Reconstruction of developmental trajectories reveal that multipotent Isl1T CPC pass through
an attractor state before separating into different developmental branches, whereas extended
expression of Nkx2-5 commits CPC to an unidirectional cardiomyocyte fate. Furthermore, we
show that CPC fate transitions are associated with distinct open chromatin states critically
depending on Is/T and Nkx2-5. Our data provide a model of transcriptional and epigenetic
regulations during cardiac progenitor cell fate decisions at single-cell resolution.
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ell fate mapping experiments demonstrated that cardiac

progenitor cells (CPCs) in the mouse form from Mespl™

cells that leave the primitive streak during gastrulation at
E6.5 (reviewed in ref. 1). At E7.5, CPCs express the homeobox
genes Nkx2-5, Isl1, or a combination of both and exhibit a mul-
tilineage potential enabling them to generate cardiomyocytes,
smooth muscle cells, endothelial cells, and pericytes>®. During
early developmental stages CPCs are located in two distinct
anatomical locations, the first (FHF) and second heart field (SHF)
4-6, Unlike FHF cells, SHF cells show delayed differentiation into
myocardial cells and represent a reservoir of multipotent CPCs
during cardiogenesis'. Isll is primarily expressed in CPCs of the
SHF, making the IslI"GFP/* knock-in reporter mouse line a
reliable source for isolation of SHF cells”®. In contrast, Nkx2-5
expression marks cells of both the FHF and SHF including the
cardiac crescent and the pharyngeal mesoderm!®10. Although
transient co-expression of IslI and Nkx2-5 has been observed,
several lines of evidence indicate that IslI and Nkx2-5 suppress
each other thereby allowing expansion of Isl1™ CPCs and dif-
ferentiation into Nkx2-5T cardiomyocytes®?.

Differentiated cells (e.g. cardiomyocytes) are assumed to
acquire their identity in a successive step-wise manner from
multipotent cells (e.g. CPCs) but the different intermediate states
allowing transition from multipotent precursor cells to differ-
entiated descendants still await further characterization. Global
analysis of transcriptional changes does not provide the resolu-
tion for precise identification of such specific cellular transition
states. Recent advances in single-cell RNA sequencing (scRNA-
seq) permit characterization of transcriptomes at the single cell
level at multiple time points, thereby allowing detailed assessment
of developmental trajectories of precursor cells'!. Single cell
ATAC-seq (assay for transposase-accessible chromatin using
sequencing) offers a similar power of resolution and generates
additional information about gene regulatory processes!>13.
However, bulk or single cell ATAC-seq have not yet been applied
to characterize chromatin accessibility and putative regulatory
elements driving cardiogenesis.

Here, we use scRNA-seq to transcriptionally profile FACS-
purified Nkx2-57 and Isl1T cells from E7.5, E8.5 and E9.5 mouse
embryos. We decided to focus on native embryonic cells and not
on ESC derivatives, since some in vitro results have to be viewed
with caution despite some advantages of ESC-based approa-
ches!®15, By taking advantage of unsupervised bioinformatics
analysis, we reconstruct the developmental trajectories of Nkx2-5
T and Isl1 T cells and identified a transition population in Isl1 T
CPCs, which become developmentally arrested after inactivation
of Isll. Furthermore, we show that the transcriptional hetero-
geneity of Isll™ CPCs is reflected by chromatin openings in
individual Isll1™ CPCs at E8.5 and E9.5. We demonstrate by
scRNA-seq and chromatin accessibility mapping that forced
expression of Nkx2-5 is associated with de novo chromatin
opening and primes the cardiomyocyte fate.

Results

Single cell transcriptomics of cardiac progenitor cells. To
unravel the molecular composition of either Isl1™ or Nkx2-5T
CPCs, we isolated GFPT cells by FACS from Nkx2-5-emGFP
transgenic and Isl1"GFP/+ knock-in embryos (Fig. la) at E7.5,
E8.5, and E9.5 and performed single-cell RNA sequencing using
the Fluidigm C1 workstation (Fig. 1b). Insertion of the GFP-
reporter gene into one allele of the IslI gene had measurable
effects on Isll expression levels but caused no apparent defects
during cardiac development and in adult stages®. The Nkx2-5-
emGFP transgenic mouse line was generated using a BAC con-
taining both the promoter region and distal regulatory elements,

which enables faithful recapitulation of Nkx2-5 expression’. After
removal of low-quality cells (Supplementary Fig. la-g), we
obtained 167 Nkx2-5T and 254 Isl1t cell transcriptomes, which
cover most stages of early heart development (Fig. 1b).

We first asked whether Nkx2-5T and Isl1T CPCs sampled at
successive developmental time-points are composed of distinct
subpopulations. Therefore, we analyzed the coefficient of
variation and dropout rates to defined heterogeneous genes as
input for a neuronal network-based dimension reduction strategy
(self-organizing map, SOM)!®, (Supplementary Fig. 2a, b).
Projection of the resulting SOM into 2D for visualization by t-
distributed stochastic neighbor embedding (t-SNE) identified
three major subpopulations of Nkx2-5" and five subpopulations
of Isll™ cells (Fig. 1c). The Nkx2-5% cluster 3 mainly
comprised E7.5 cells, whereas cluster 1 contained cells from
E8.5 and E9.5 implying an intermediate cell state. Cluster 2
predominantly contained cells from E9.5 (Fig. 1d). Stage-
dependent clustering was less evident for the five Isll™
subpopulations, which might indicate that the specific cellular
phenotypes of Isl1T subpopulations are maintained for longer
time periods (Fig. 1d).

To identify cluster-specific, differentially expressed genes, we
used MAST!7 and a gene ranking approach implemented in
SC318, The top 269 and 216 genes that were differentially
expressed in the Nkx2-5T and the Isl1T lineage, respectively,
included several established cardiac regulatory genes such as
Handl, Tbx3/4/5, Gata2/3, Smarcd3, Rbm24, Wnt5a, Bmp4,
Notchl, and Fgf3/15 (Fig. le; Supplementary Data 1, 2)19-23,
Importantly, we detected numerous differentially expressed genes
that so far had not been linked to cardiogenesis probably due to
restricted expression in a small number of cells (Fig. le;
Supplementary Data 1, 2). For example, Isl1 ™ cluster 5 expressed
the cardiac transcription factors (TFs) Tbx3/4 and Wnt5a as well
as several posterior Hox genes including Hoxa7/9/10, Hoxb6,
Hoxc8, and Hoxd8 (Fig. le; Supplementary Fig. 3a). In addition,
we newly identified several TFs such as Sox7/18, Sall3, Zbtb20,
Zfp462/512b/711, KIfl4; G-proteins including Arhgapl, Adgrf5,
Arhgef15; Polycomb group (PcG) member Asxi3, the de novo
DNA methyltransferase Dnmt3b in Nkx2-5 or Isl1t clusters
(Fig. 1e; Supplementary Data 1, 2).

Next, we assigned identities to each cluster based on the
expression of key marker genes (Fig. 1f, g). Consistent with the
gene ontology analysis of differentially expressed genes within
each cluster, Nkx2-5 cluster 2 and Isl1* cluster 2, which are
enriched for GO terms such as muscle contraction and are
characterized by c¢Tnt and a-smooth muscle actin expression,
appear to represent a myogenic fate, whereas Isl1™ cluster 1,
which expresses Cd31 and is enriched for GO terms related to
endothelial cell differentiation, is characterized by endothelial cell
features (Fig. 1f, g Supplementary Fig. 4a, b). Interestingly,
expression of Nkx2-5 and IslI varies among subpopulations
within each lineage: (i) Nkx2-5 shows more pronounced
expression in late stages (clusters 2 and 3, E8.5 and E9.5) (Figs. 1f,
2e); (ii) Isll expression decreases in the cells expressing
differentiation markers (clusters 2 and 1) (Figs. 1g, 2f). In
addition to numerous differentially expressed genes, all three
clusters of Nkx2-5% CPCs show an enrichment of GO terms
related to muscle development and contraction (Supplementary
Fig. 4b) suggesting that Nkx2-5 is associated with myogenic
differentiation while IslI is linked to the maintenance of
progenitor cell multipotency.

To test the robustness of our approach and to analyze whether
sufficient numbers of cells were sequenced to unveil the entire
heterogeneity of CPCs, we generated single-cell transcriptomes of
additional 663 Nkx2-57 CPCs using the WaferGen iCell8 system
(Fig. 1b). After correction of batch effects?4, merging and aligning
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of data from both approaches (Supplementary Fig. 5a, b), we
essentially mirrored the C1 data (Supplementary Fig. 5¢, d). In
particular, we detected a similar distribution of marker genes in
cluster 1 and 3 but did not fully reproduce the marker gene
pattern for cluster 2 (Supplementary Fig. 5e). We concluded that

40 20 0 20 40
t+SNE 1
Expression

Low NN High

sequencing depth rather than cell numbers is the main limiting
factor for the discovery of novel genes in CPCs. Thus, we
hereafter focused our analysis on the C1 data, which provided
substantially deeper sequence coverage (Supplementary
Fig. la-e).
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Fig. 1 Identification of CPC subpopulations by single-cell RNA-seq. a Schematic representation of the Nkx2-5-emGFP transgenic reporter and Is[1nGFP/+
allele (top). Expression of Nkx2-5-emGFP and Isl1-nGFP at E8.5 in mouse embryonic hearts. (bottom). b Sampling time points for scRNA-seq, bulk RNA-
seq, scATAC-seq, and bulk ATAC-seq. The table shows numbers of cells used for scRNA-seq. QC: quality control. ¢, d t-SNE visualization of individual
Nkx2-5F and Isl1t CPCs to identify subpopulations. Colors denote corresponding clusters, and (d) development stages. Outlier cells are indicated by gray
crosses. e Hierarchical clustering of expression heatmaps showing differentially expressed marker genes (AUROC > 0.8, FDR < 0.01; and lower bound of
LogFC > 2 or higher bound of LogFC < —2, FDR < 0.01) across different clusters in Nkx2-5% CPCs (top) and Isl1t CPCs (bottom). Source data are provided
in the Source Data file. f, g Expression of selected individual genes in Nkx2-51 (f) and Isl1t (g) CPCs. The colors represent expression levels of cells that
are shown in the t-SNE plots in (€). EC, endothelial cell. CM, cardiomyocyte. Scale bar: 300 pm

Reconstruction of development trajectories of CPCs. scRNA-
seq data allow ordering of cells by pseudotime based on cell-to-
cell transcriptome similarity for calculation of developmental
trajectories. We mapped cells collected at successive develop-
mental stages along the pseudotime for reconstruction of the
developmental trajectories of Nkx2-5" and Isl1™ CPCs (Fig. 2a,
b). Interestingly, cells collected at the same embryonic stages
aligned to broad pseudotime points, suggesting that CPCs pro-
gress differentially through the developmental program. Cells
undergoing a critical fate decision (such as lineage bifurcation)
have been postulated to pass transition states?” corresponding to
a switch between different attractor states?®. To delineate such
transition states, we calculated the critical transition index of
Nkx2-51 and Isl1t cell clusters [abbreviated as I.(c)]?’. The I,(c)
values of Nkx2-5T clusters showed similar numerical ranges
essentially excluding the existence of transition states in the
Nkx2-5% cell population. Instead, cells from later stages (cluster
1) showed decrease of I(c) indicating stable settlement into an
attractor state (Fig. 2c, left) with cardiomyocyte-like expression
characteristics (Fig. le). In contrast, computation of I(c) values
of Isl1 T clusters revealed decreased values for cells at the bifur-
cation point (cluster 3 and 4). Cells that overcame this point
(clusters 1 and 2) exhibited more coordinated changes of gene
expression changes (Fig. 2c, right). Since the critical transition
index only hints to the presence of a transition state but does not
reveal its stability, we calculated pairwise cell-to-cell distances
(Supplementary Fig. 6a, b)?8. As expected, cell-to-cell distances of
Nkx2-5% CPCs did not change dramatically while cell-to-cell
distances of Isl1T CPCs in cluster 3 and 4 increased substantially
(Fig. 2d) indicating that Nkx2-57 CPCs follow one continuous
trajectory without distinct transition states (Fig. 2a). In contrast,
the trajectory of Isll1™ CPCs bifurcated into two distinct orien-
tations (endothelial cells and cardiomyocytes), suggesting the
existence of a transition state with elevated noise levels, separating
multipotency of Isl1*t CPCs from acquisition of distinct cellular
identities (Fig. 2b).

To identify genes potentially required to determine and/or
maintain corresponding cell states, we generated a list of 108
genes for Nkx2-57 cells and 130 genes for Isl1™ cells positively
correlated with progression of pseudotime across clusters
(Spearman rank correlation coefficient >0.5; Supplementary
Fig. 7a, b; Supplementary Data 3) focusing on TFs and their
chromatin-modifying partners (Fig. 2e, f). Genes expressed highly
at early stages of the developmental trajectory were assigned to a
priming category. Genes expressed at fate-restricted stages but
not in multipotent progenitor cells were placed in a de novo
category (Supplementary Fig. 7c, d). We noted that expression of
Dnmt3b, Gata2/3, Handl, and Msx] declined along Nkx2-5%
developmental trajectories, qualifying them as priming genes. In
contrast, increased expression of Nkx2-5, Ankrdl, Cdkn2d, Hopx,
Mef2c, Myocd, Smyd1, Tgfblil, and Tbx20 during Nkx2-5T CPC
differentiation qualified them as de novo genes (Fig. 2e). Priming
genes for Isll™ CPCs included TFs of the Hox-family, Gata2,
Handl, and Tbx3/4 as well as Hhex, Msx1, Sall4, and Snail.
Mef2¢c, Nkx2-5, Tgfblil, Ankrdl, Myocd, and Smydl were

expressed at fate-restricted stages and hence represent de novo
genes (Fig. 2f). The distinct expression pattern of priming and de
novo TFs in Nkx2-51 compared to Isl1 cells indicates that the
fate of progenitor cells is governed by different gene regulatory
networks compared to fate-restricted cells.

Comparison of Isll1™ and Nkx2-5T cardiac progenitor cells.
The pseudotime analysis revealed that Isl1* and Nkx2-5% CPCs
show different trajectorial patterns. On the other hand, it is
known that some cells during cardiac development transiently co-
express Isl] and Nkx2-5%2%%0, To investigate Is/I and Nkx2-5 co-
expressing cells more closely, we took advantage of the Isl1+/nGFP
and Nkx2-5-emGFP reporter alleles, whose gene products are
located in different subcellular compartments. Analysis of Isll
+/mGFP/Nkx2-5-emGFP compound embryos showing the expec-
ted intracellular GFP distribution in isolated CPCs (Fig. 3a)
revealed that at E8.5 the majority of GFP™ CPCs expressed IslI
(61 +3.8%) but not Nkx2-5. 21 +0.4% expressed Nkx2-5 but not
Isll, while the remaining 15+2.7% co-expressed both genes
(Fig. 3b). The relative proportion of Isll *"Nkx2-5~ cells (41% +
1.5) declined at E9.5 accompanied by an increase of Isl17/Nkx2-5
T (28% £5.1) and Isl1t/Nkx2-57 cells (29% +3.8) (Fig. 3b).
Consistently, Isl1™ and Nkx2-57 cells showed a spatial overlap
both at E8.5 and E9.5 (Supplementary Fig. 8).

Interestingly, analysis of scRNA-seq profiles indicated that IslI
and Nkx2-5 co-expressing cells do not form a distinct group
within the Nkx2-57 CPC population (Fig. 3¢). In contrast, IslI
and Nkx2-5 are co-expressed in cluster 2 (CPC late, CM) of the
Isl1™ CPC populations (Fig. 3c), which corresponds to the
position of Nkx2-5 expressing cells on the Isll pseudotime
trajectory lineage (Fig. 3d). Isl1 expression was primarily found at
early stages of the Nkx2-5 trajectory, albeit expression was rather
low, suggesting that strong expression of Nkx2-5 at early stages
might already cause a strong cardiomyocyte commitment (Fig. 3d,
e).

Since the pseudotime analysis suggested different roles of CPCs
expressing either high levels of IslI or Nkx2-5, we directly
compared transcriptional profiles of the Isl1T vs. the Nkx2-5T
lineage at E8.5 and identified several differentially expressed genes
(Fig. 4a). In agreement with the scRNA-seq data (Fig. 4a), Ankrdl
was co-expressed with Nkx2-5 in looping heart tubes by RNA
in situ hybridization (Fig. 4b). In situ hybridization also
confirmed moderate to high expression levels of Sall3 and
Sox18 in the Isl1* lineage, which was not seen in the Nkx2-5%
lineage (Fig. 4c). Other examples included AsxI1 and MsxI, whose
low expression levels by scRNA-seq analysis in the Isl1* but not
the Nkx2-5 lineage was corroborated by RNA in situ hybridiza-
tion (Fig. 4d).

Isl1 is indispensable for CPC fate bifurcation. The loss of IslI
results in absence of outflow tract and right ventricle and early
embryonic lethality?!, which prevents dissection of Is/I dependent
molecular processes in the SHF. To address the role of IslI in cell
fate determination, we inactivated the IslI gene by generating
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Fig. 2 Reconstruction of trajectories and transition states of CPCs. a t-SNE plots showing diffusion pseudotimes (gray arrows) of Nkx2-5+ and b Isl1+
CPCs. Clusters and development stages of individual cells are color-coded as indicated. ¢ Boxplots representing the distribution of |c(C) values from all
marker genes for each cluster of Nkx2-51 (left) and Isl* (right) cells. Lower and upper hinges correspond to the first and third quantile (25th and 75th
percentile), while whiskers extend from the hinge to the smallest (largest) datum not further than 1.5 times the interquartile range. Outliers are plotted
individually. d Violin plots showing the distribution of pairwise cell-to-cell distances across each cluster of Nkx2-51 (left) and Isl1t (right) cells. Inset

boxplots show the median, lower and upper hinges as well as whiskers and outliers as in (c). e, f Expression levels of different transcription factors and key
marker genes on the pseudotime axis in Nkx2-5T (e) and Isl1* (f) cells. Trend lines calculated by Loess regression are indicated in gray. Source data for

(c-f) are provided in the Source Data file

Is11"GFP/nGFP embryos and isolated Isll-GFP* cells by FACS
analysis at E9.5 (Fig. 5a). Projection of IsI1-KO single cells on the
trajectory of the developing SHF revealed that Isl1-KO cells are
stalled/trapped in the previously identified stable attractor state
(Fig. 5b). Analysis of G1/S and G2/M cell cycle markers in single
cells (Supplementary Fig. 9a—c) suggested reduction of cycling

Isl1-knockout cells compared to wild-type cells, although the
results did not reach statistical significance (x? test: p = 0.062)
(Fig. 5¢). We concluded that proliferation defects might con-
tribute to the attractor state of IslI-knockout cells but that
additional biological processes probably play more important
roles. To identify such processes, we performed gene ontology
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analysis of deregulated genes in Is/I-KO cells. Interestingly, cell
differentiation genes were strongly affected by the inactivation of
Isll (Fig. 5d). Moreover, the GO terms endothelial cell migration
and muscle organ development were enriched in WT compared
to Isll-knockout cells (Fig. 5d), which is consistent with com-
promised differentiation of Is/1-knockout cells to endothelial cells
or cardiomyocytes.

Nkx2-5 establishes a unidirectional fate for CPCs. Our
pseudotime-based analysis of developmental trajectories revealed
one continuous trajectory of Nkx2-5% CPCs suggesting that
Nkx2-57 cells are exclusively committed to become cardiomyo-
cytes. Although the previous lineage tracing studies strongly
indicate that Nkx2-57 CPCs are multipotent3?, we reasoned that
cardiac priming at E8.5 due to continued expression of Nkx2-5
might overcome smooth muscle identity and induce a stable
cardiomyocyte fate. To directly test this hypothesis, we first re-

analyzed published scRNA-seq data of Nkx2-5 null embryonic
hearts at E9.5!° and found significantly increased numbers of
smooth muscle cells raising from 14.5% (138/949 cells) in wild
type to 31.2% (39/125 cells) in Nkx2-5 mutant hearts ()(2 test: p <
2.37e—6) (Fig. 6a). In a second approach, we specifically
expressed Nkx2-5 and EGFP (separated by an IRES) in the Isl1T
lineage using Isl1-Cre to initiate transcription from the Rosa26
locus (hereafter named Isl11t/Nkx2-50E)8. Isolation of GFP+
cells by FACS from E12.5 embryonic hearts and scRNA-seq
(Fig. 6b) revealed that Isl1 T/Nkx2-50E cells align to the Nkx2-5T
trajectory and the cardiomyocyte-like branch of the Isll ™ tra-
jectory (Fig. 6¢c, d). Importantly, Isl1T/Nkx2-50E cells did not
contain any endothelial cell- or smooth muscle cell-like popula-
tions, although by E12.5 Isl1* cells have given rise to multiple
endothelial cells in wild-type conditions (Fig. 6d) indicating that
Nkx2-5 is required and sufficient to resolve the multipotent dif-
ferentiation capacity of CPCs.
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Fig. 3 Comparison of Isl1t and Nkx2-5 cardiac progenitor cells. a Confocal images showing nuclear-, cytoplasmic- and co-localization of GFP in CPCs
FACS-sorted from Is[1t/1GFP /Nkx2-5-emGFP* embryos. Nuclei were stained with DAPI (blue). b Immunofluorescence-based quantification of (a). Isl1
+Nkx2-57, Isl1tNkx2-5 and Isl1T-Nkx2-5% cells were FACS-sorted from Isl1t/nGFP /Nkx2-5-emGFP+ embryos at E8.5 and E9.5. Quantification of different
cell populations was achieved by counting all immunostained cells in a multiwell dish. Mean £ s.d. are shown. Circles represent results from different
biological replicates [n=3; T (cell number) of E8.5 =225, 260, 100; T (cell number) of E9.5 =175, 180, 100]. ¢ Clustering of Is|T and Nkx2-5 co-
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Single cell chromatin accessibility of Isl1™ CPCs. Profiling of
genome-wide chromatin accessibility using bulk preparations of
cells will only identify opening of cis-regulatory elements at the
population level. Thus, we utilized a single cell ATAC-seq (scA-
TAC-seq) approach? and analyzed E8.5 and E9.5 FACS-sorted
Isl1™ CPCs. The aggregated reads from all individual CPCs clo-
sely recapitulated the open regions recognized by bulk ATAC-seq
using 2000-50,000 cells (Fig. 7a). After various stringent quality
assessments and filtering (Supplementary Fig.1la-d), 67,368
peaks out of 695 sequenced CPCs were analyzed.

The sparse and binary nature of scATAC-seq data poses new
computational challenges for data analysis*>. We employed
methods of information retrieval®? to weight important peaks
enabling detection of 5 different subpopulations (Fig. 7b).

a E8.5 Isl1+ CPCs

lJ I I

Ankrd1

Notably, CPCs sampled at E8.5 and 9.5 were evenly distributed
between cluster 1, 2, and 3, again arguing for differential, albeit
continuous, progression through the developmental program.
Cells in cluster 4 and 5 were mainly derived from E9.5, suggesting
that they had reached a certain level of maturity. To obtain
insights into the biological processes in specific CPC populations,
we identified cluster-specific peaks (Supplementary Data 4)3* and
performed gene ontology analysis of genes that were close to
(within £ 2.5 kb to TSSs) proximal, cluster-specific peaks. Cluster
1 was enriched for GO terms related to heart development and
muscle contraction suggesting advanced cardiomyocyte differ-
entiation, whereas cluster 5 showed enrichment of GO terms
related to endothelial cells (Fig. 7c). Consistently, cluster 1
contained the cardiomyocyte genes Handl and Cacnalc, whereas
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Fig. 4 Spatial expression pattern of genes identified by scRNA-seq of CPCs. a Heatmap showing expression of selected genes in Isl1t and Nkx2-5* CPCs at
E8.5. b-d In situ hybridization of sections from E8.5 embryos to reveal spatial expression profiles of genes identified by scRNA-seq. Scale bar: 100 pm for
(b), 50 um for (¢, d). V: ventricle. PA: primitive atria. PhA: pharyngeal arches. OFT: outflow tract. Arrows indicate positive cells
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Fig. 5 Inactivation of Is|1 prevents CPC fate bifurcation. a Schematic illustration depicting generation of Isl1 embryos and scRNA-seq. b t-SNE plots showing
the predicted diffusion pseudotime of IslT knockout CPCs projected on Isl1* cells (left), and clustering with Isl1t cells (right). € Ratios of cycling and non-
cycling Isl1 knockout and wild type Isl1™ CPCs. 2 test: p = 0.062. n indicates cells numbers. d Heatmap showing expression of deregulated genes in Isl*
cells at E8.5 and E9.5 (cluster 1, 2, and 5) isolated from Isl1 knockout and control embryos. Source data are provided in the Source Data file

cluster 5 comprised the endothelial cell genes Tek and Ecml
(Supplementary Fig. 12a). Cluster 2 was enriched for GO terms
related to embryonic morphogenesis genes typical for early
progenitor cells preceding bifurcation into cardiomyocyte and
endothelial lineages.

Settlement of the Isl1 ™ lineage by transcription factors. ATAC-
seq provides an excellent tool to identify transcription factor
(TFs) motifs that become accessible due to nucleosome eviction
and/or chromatin remodeling!®. Using chromVar3>, we focused
on transcription factor dynamics and variations in motif acces-
sibility taking into account that TF motifs identified by ATAC-
seq frequently do not distinguish between related TFs of the same

family usually sharing similar motifs>®. We ranked cluster-
specific TFs and subjected top scorers to t-SNE. In line with the
heterogeneity revealed by scRNA-seq analysis, chromVAR iden-
tified 5 subpopulations from Isl1*™ CPCs (Fig. 8a; Supplementary
Fig. 12b). We next aligned the TF motif patterns of individual
single cells into a pseudotemporal ordering (Fig. 8b). Based on the
gradual and continuous change of motif patterns in each cluster
and the annotations of major subpopulations, we split the cells
into cardiomyocyte and endothelial trajectories (Fig. 8c, d).
Pseudotemporal ordering indicated TF binding dynamics in
different developmental branches, suggesting that a set of TFs
cooperatively regulates Isll1™ CPC differentiation: (i) cluster 2
CPCs feature Zebl, Tcf3/4, and Fox family TFs; (ii) established
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cardiac TFs such as Tbx5, Hand 1 and Gata family, together with
Hox genes are closely associated with cardiomyocyte lineage
settlement in cluster 1; (iii) the induction of Sox gene family in
transition CPCs (cluster 3) seems to skew the cell fate to the
endothelial lineage, which (iv) eventually is characterized by
enrichment of Gata and Sox TF binding (Fig. 8e). Correlation of
RNA expression and chromatin accessibility in individual single
cells revealed two characteristic patterns of ATAC:RNA pairs: (i)
RNA expression of TFs directly matches accessibility of
corresponding TF bindings sites as exemplified for Hox and
Gata families in the cardiac branch suggesting that members of
both TF families actively regulate respective target genes at this
developmental stage; (ii) RNA expression of TFs precedes
accessibility of corresponding TF bindings sites. This scenario
was apparent for Sox and Gata families in the endothelial branch,
suggesting that additional epigenetic regulatory mechanisms have
to occur before TFs take action (Fig. 8f).

Isll shapes chromatin accessibility in CPCs. To analyze how
the lack of Isll expression affects chromatin accessibility, we
performed bulk ATAC-seq of Isl1T mutant CPCs at E9.5. Since
our scRNA-seq analysis at E9.5 indicated that Is]1-KO cells are
trapped in the previously identified stable attractor state, we
compared ATAC-seq data from Isl1t mutant CPCs to Isl1T
WT CPCs from E8.5 and E9.5, which were separated into Isl1

T/CD31- CPCs (CM-trajectory) and Isl1T/CD31" CPCs (EC-
trajectory) (Supplementary Fig. 13a). For each condition and
time-point, at least two biological replicates were used (Sup-
plementary Data 5, 6; Supplementary Fig. 13b, c). Inactivation
of the IslI gene resulted in barely any changes compared to Isl1
T/CD31- CPCs (CM-trajectory) either at E8.5 or E9.5 (Fig. 9a,
b). However, loss of IslI led to more robust closing than
opening peaks compared to Isl1T/CD31" CPCs (EC-trajectory)
at both E8.5 and E9.5, suggesting that Is/I is required to leave
the attractor state characterized by a more open chromatin
organization (Fig. 9a, b). In a nutshell, these results indicate
that IsI1 mutant CPCs exhibit an epigenomic profile that
strongly resembles developing cardiomyocytes and differs from
endothelial cells.

Next, we focused on differences in chromatin accessibility
between Isl17/CD31" CPCs and IslI mutant CPCs. Annotation
of opening and closing peaks by GREAT analysis®’ indicated that
13.5% of differential peaks (1120) located in proximal regions
whereas 87.5% (7260) were present in distal regions (> +5Xkb to
the TSS sites) (Fig. 9¢; Supplementary Fig. 13c). To investigate
whether changes in chromatin accessibility in proximal regions
correlated with differential gene expression, we generated
additionally transcriptional profiles of biological replicates at
each corresponding developmental stage by bulk RNA-seq using
the SMART-seq2 method33. We paired 126 elements that were
more accessible after inactivation of Isl1 and 636 elements more
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Fig. 6 Nkx2-5 institutes a unidirectional fate in CPCs to cardiomyocytes. a

Re-analysis of published data showing the ratio of smooth muscle cells in

embryonic hearts of wild type and Nkx2-5 knockout embryos at E9.5. Smooth muscle cells are scored by low expression of Nkx2-5 (LogTPM <1, null
expression) and high expression of smooth muscle cell genes (Tagln, Cnnl, Acta2, Caldl, Mylk, Hexim1, and Smtnl2 moderate to high (LogTPM > 2) for at
least 5 of these 7 genes). x2 test: p < 2.37e—6. n indicates cells numbers. b Schematic illustration of forced expression of Nkx2-5 in Isl1* cells and scRNA-
seq. ¢ Predicted diffusion pseudotime of Isl1t/Nkx2-50E cells projected on t-SNE plots of Nkx2-51 and Isl1t d CPCs
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accessible in Isl1*/CD31" CPCs (EC-trajectory) with corre- expression, whereas gene loci losing chromatin accessibility
sponding gene expression. On average, promoters that gain down-regulated expression (p <0.001, Student’s t-test) (Fig. 9d),
chromatin accessibility displayed significant upregulation of gene  revealing a clear correlation between chromatin accessibility and
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nearby gene expression. Based on the enrichment of H3K27ac
and H3K4mel (Supplementary Fig. 13d), we reasoned that the
distal peaks most likely represent enhancer regions°.

Assessment of transcription factor motifs present in either
opening or closing peaks using the motif analysis package
HOMER# revealed enrichment of binding motifs for Tbx20,
Meisl and Hox-family members in IslI-dependent opening peaks
while binding sites for Sox-, HNF- and GATA-family TFs were
enriched at peaks that disappeared after loss of IslI (Fig. 9¢). We
concluded that IslI acts together with Tbx genes to guide cardiac
progenitor cell fate decisions but prevents binding of Sox and
HNF factors for endothelial cell fate termination.

The chromatin accessibility landscape of Nkx2-51 CPCs. Bulk
ATAC-seq analysis of FACS-sorted Nkx2-5 CPCs sampled at

12

E7.5, E8.5, and E9.5 revealed major genome-wide changes of
chromatin accessibility between E7.5 and E8.5, while E9.5 CPCs
showed only minor differences compared to E8.5 Nkx2-57 CPCs
suggesting that by E8.5 Nkx2-57 CPCs have already opened or
closed most genomic loci required for further development
towards cardiomyocytes (Fig. 10a; Supplementary Fig. 14a; Sup-
plementary Data 7). A more refined analysis of the genome-wide
distribution of differential peaks by K-means clustering identified
regions in cluster 1 that were closed at E7.5 but open at E8.5
(Fig. 10b). Genes associated with the opening regions in cluster 1
were intimately involved in sarcomere and contractile fiber for-
mation (Supplementary Fig. 14b). Interestingly, this group of
genes was characterized by peaks located in proximal regions
(Fig. 10c), which comprised only 6.7% of all peaks. The majority
of changes in chromatin accessibility in cluster 1 was located in
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Fig. 10 Bulk ATAC-seq analysis of Nkx2-51 CPCs. a Number of differential chromatin accessibility peaks (log2(FC) > 2, false discovery rate [FDR] < 0.05).
b Genome-wide distribution of differential open chromatin peaks grouped by K-means. Each row represents one differential peak, normalized to sequencing
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distal regions, which were enriched in TF motifs for Mef2c,
Gata4, Tbx20, and Nkx2-5 (Fig. 10d). Taken together our newly
established chromatin accessibility atlas of Nkx2-57 CPCs iden-
tified a set of TFs that seems to act together with Nkx2-5 for
orchestration of Nkx2-5% cell maturation.

In contrast to the inactivation of IslI, which preferentially
erased accessible chromatin sites (Fig. 9a), forced expression of
Nkx2-5 increased accessible chromatin sites at multiple loci
compared with either Nkx2-5T or Isl1* CPCs at E9.5 and E12.5
(Supplementary Fig. 14c, d; Supplementary Data 7). The
profound opening of chromatin at E9.5 after overexpression of
Nkx2-5, which is particularly evident in cluster 1 and 4
(Supplementary Fig. 14e), is a striking example for the ability of
single TFs to alter chromatin structure. Although comparatively
minor, we also observed enhanced chromatin closing in clusters 2
and 3 at E9.5, which is probably initiated by secondary events
(Supplementary Fig. 14f). Principle component analysis (PCA) of
all unified peaks revealed that Nkx2-5 overexpression induces a
distinct profile of accessible chromatin sites at E9.5, which is
different compared to what is seen in other CPCs (Fig. 10e).
However, we noted that de novo chromatin opening occurred
only transiently but was not sustained upon CPC differentiation,
since E12.5 Nkx2-5 overexpressing cells compared to E9.5,
grouped closer to E9.5 Isl1™ and Nkx2-57 CPCs in the PCA
analysis (Fig. 10e). We hypothesized that chromatin opening
evoked by Nkx2-5 overexpression was overcome by cellular events
set in motion by Nkx2-5 during differentiation. Analysis of Nkx2-

5 OE-dependent differential peaks revealed enrichment of Gata-
and Mef2c-motifs, consistent with cardiomyocyte fate determina-
tion by Nkx2-5 (Supplementary Fig. 14f).

Discussion
Our scRNA-seq analysis provides a rich data source for the dis-
covery of genes that might play a role in heart development. For
example, we found that posterior Hox genes are temporarily
expressed in early-stage Isl1T cells. Anterior Hox genes (Hoxal,
Hoxb1, and Hoxa3) are involved in cardiac development*!~43 but
expression of posterior Hox genes had not been detected in CPCs
so far. We speculate that posterior Hox family TFs might con-
tribute to patterning of the heart, which is supported the presence
of cardiac defects in Hox A/B cluster compound mutants*4. Our
scATAC-seq data also revealed enriched binding of Hox TFs in
Isl1™ CPCs of the cardiomyocyte branch, further supporting the
potential function of Hox TFs for heart development and cardi-
omyocyte differentiation. Surprisingly, our results indicate that
Isll and Nkx2-5 co-expression does not drive the formation of a
distinct cluster characterized by a specific gene expression profile.
Instead, Nkx2-5 expression serves as a marker for late-stage CPCs
that already express cardiac genes and are about to abandon IslI
expression.

Numerous studies have demonstrated that cells within appar-
ently homogenous populations differ considerably, which might
have many reasons ranging from stochastic fluctuations in gene
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expression patterns, different stages of cell division, execution of
subspecialized tasks to differential priming for future cellular
decisions?0274>:46 Cellular heterogeneity is particularly high
during embryonic development when multipotent cells have to
undergo a series of decisions to acquire a differentiated pheno-
type!?2047 Notwithstanding, it was surprising that the cardio-
genic Isl1™ and Nkx2-57 CPCs own a staggering degree of
heterogeneity. Several reasons might account for this finding: (i)
due to the massive chromatin and transcriptional changes that are
required, it might cost individual cells different time to pass
through transition states?® or switch between different attractor
states®, (ii) cells within a cluster defined by scRNA-seq differ in
regard to open or closed loci, which will change responsiveness to
external cues, causing secondary heterogeneity, (iii) develop-
mental decisions are often driven by gradients of signaling
molecules??, which necessarily cause differential responses and
heterogeneity, (iv) the parallel existence of heterogeneous clusters
of cells in a specific lineage creates more flexibility and adapt-
ability that enhances the ability to cope with turbulences during
inductive events, thus increasing the robustness of developmental
processes.

Lineage tracing and clonal analyses have demonstrated that
Nkx2-5% CPCs contribute to cardiac endothelium and smooth
muscle cells®®. However, we did not detect Nkx2-5 expression
outside of the cardiomyocyte lineage during differentiation, which
seems to be in conflict with lineage tracing studies but is con-
sistent with prior studies allocating Nkx2-5 primarily to cardio-
myocytes?’. It is important to remember that tracing or actual
reporter-based gene activity approaches address different ques-
tions. In our study, we exclusively focused on Nkx2-5 expressing
cells but not on their derivatives, which excludes Nkx2-5-derived
cells that have terminated Nkx2-5 expression. We reason that
Nkx2-5 expression is essential to maintain the ability of multi-
potent progenitor cells to differentiate into cardiomyocytes but
that Nkx2-5 expression is quickly terminated in cells acquiring a
stable endocardial or smooth muscle cell fate thereby escaping
Nkx2-5-emGFP based FACS-sorting. Interestingly, scRNA-Seq
analysis indicated that Nkx2-5T cells at E8.5 express cardiac
markers such as ¢TNT but also a-SMA as well as several other
smooth muscle markers such as Caldesmon, Tagln, and Cnnl
(Fig. 1f, g; Supplementary Fig. 10). The co-expression of cardio-
myocyte and smooth muscle cell markers might suggest the
ability of Nkx2-5F cells to differentiate into cardiomyocytes and
smooth muscle cells but alternatively might reflect the well-
known expression of smooth muscle genes in immature cardio-
myocytes*S, We think that the loss of a bipotent fate of Isl1 T cells
and the acquisition of a unipotent cardiomyocyte fate after forced
expression of Nkx2-5 clearly argue for a decisive role of Nkx2-5 in
cardiomyogenic differentiation. In agreement with this hypoth-
esis, expression of cardiomyocyte genes such as Myl7314°
increased together with Nkx2-5 expression at early development
stages.

So far dynamic changes in the genome-wide chromatin land-
scape have not been systematically investigated during early heart
development, although chromatin remodeling has been linked to
heart development and the BAF chromatin-remodeling complex
was identified as a crucial factor*>*0. Our scATAC-seq data
demonstrates that profiling of chromatin accessibility in single
cells is a powerful tool to uncover cellular heterogeneity, equal or
even superior to scRNA-seq. In fact, scATAC-seq detected
5 subpopulations of Isl1*t CPCs at E8.5 and E9.5 compared to
3 subpopulations that we identified by scRNA-seq at this stage.
We assume that these differences are not only caused by technical
issues but are biologically meaningful. Before genes are expressed,
the corresponding loci have to open and enter a euchromatic
state, which will be visible by ATAC-seq but not by RNA-seq.

Furthermore, individual TFs might bind to cognate motifs but
this might be not sufficient to initiate robust transcription, which
will create mismatches between ATAC-seq and RNA-seq data. Of
course, such conditions do not apply to all genes, which became
evident when we paired scRNA expression with single cell
chromatin accessibility. We identified numerous matching
ATAC:RNA pairs, which is probably the rule for stable cellular
conditions, such as in terminally differentiated cells that do not
experience major phenotypical changes. Heterogeneity at the
chromatin level in respect to open and closed loci might represent
a distinct biological advantage even under ground-state physio-
logical conditions. Differential chromatin accessibility among
individual cells will greatly increase flexibility for timely cellular
responses within a population of cells by creating permissive or
repressive states for transcription.

The integration of different regulatory layers into a compre-
hensive model that explains different developmental decisions
during heart development will be a major challenge for the future.
The complex network of stage-specific cis-regulatory elements
and the single cell transcription profiles revealed in our study
provides part of the essential groundwork to move in this
direction.

Methods

Mouse work and sampling of single cells. All animal experiments were per-
formed in accordance with German animal protection laws and EU ethical
guidelines (Directive 2010/63/EU) and were approved by the local governmental
animal protection authority at the Regierungsprisidium Darmstadt, Germany. The
transgenic mouse lines used in this study have been described previously”:5.
C57BL/6 mouse embryos were dissected at E7.5, E8.5, E9.5 or E12.5. At E8.5, E9.5,
and E12.5 we used dissected hearts instead of the whole embryo (at E7.5), to avoid
contamination of non-cardiogenic cells that might be marked by IslI or Nkx2-5
expression. In total, 403 embryonic hearts were harvested for scRNA-seq, scATAC-
seq, bulk RNA-seq, and bulk ATAC-seq experiments. Each embryo was accurately
staged based on the number of somites to allow precise matching of different
developmental stages. Embryonic hearts were isolated under the dissection
microscope and digested into single cells suspensions with 0.25% trypsin-EDTA.
After washing with PBS, cells were stained with DAPI to check for viability and
sorted using the GFP channel of the BD FACSAria II instrument. To obtain Isl1
nGEP/GEP o [5]1+/Nkx2-50E cells, Isl1"GFP/+ mice or Isl1-Cre and Rosa26N*k2-5-
IRES-GFP mice were mated and embryos were recovered at indicated time points,
and genotyping was achieved by PCR using non-heart tissue of the same embryos
as described®. To get Isl1T/"GFP;Nkx2-5emGFP* embryos, Isl1+/"GFP and Nkx2-
5emGFP transgenic mice were mated and embryos were isolated at E8.5 and E9.5,
and genotyping was performed as well®, and Isl1+/"GFP/Nkx2-5emGFP* (double
positive) embryos were retained for FACS-sorting. Following PCR primers were
used for genotyping: Isl1"GFP/+ forward: 5'-CTC TTG ATT CCC ACT TTG TGG
TTC-3'; Isl1NGFP/+ reverse: 5'-TCA GTA AGC TAT GGG TTA GAG-3'; Isl1-Cre
forward: 5'-ACT ATT TGC CAC CTA GCC ACA GCA-3’; Isl1-Cre reverse: 5'-
AAT TCA CAC CAA ACA TGC AAG CTG-3'; Nkx2-5emGFP forward: 5'-GAC
GTG ACC CTG TTC ATC AG-3'; Nkx2-5emGFP reverse: 5-GTT TCTT GGG
GAC GAA AG-3'; Rosa26NX2-5IRES-GFP foryard: 5'-AAA GTC GCT CTG AGT
TGT TAT-3'; Rosa26N*k2-5-IRES-GFP reverse: 5'-GGA GCG GGA GAA ATG GAT
ATG-3'.

FACS-sorting with antibody staining. To harvest Isl1TCD31" and Isli*CD31%
CPCs, the dissociated cells as described above were stained with anti-mouse CD31
PE-conjugated antibody (BD Pharmingen Cat# 553373) with the concentration of
lug/ml on ice for 30 min in the presence of 1% sodium azide, washed with 1 x PBS
extensively, and sorted using the GFP and PE channels of the BD FACSAria II
instrument.

Antibody staining and in situ RNA hybridization. The embryos at indicated
developmental stages were harvested and fixed with 4% PFA. The fixed tissue was
equilibrated in 10% and 30% sucrose/PBS sequentially and frozen on dry ice.
Sections of 10 um were used for immunofluorescence staining followed the stan-
dard protocol. The following antibodies with indicated concentration were used:
anti-Nkx2-5 (ThermoScientific Cat# PA5-49431, 1:1,000) and anti-Isl1 (DSHB
39.4D5, 1:100). Purified Isl1T/GFPNkx2-5-emGFP CPCs were stained using anti-
GFP antibody (ThermoFisher Scientific Cat# A11120, 1:2,000). The florescent RNA
hybridization was performed using ViewRNA ISH Assays (ThermoFisher Scientific
Cat# QVT0013) according to the manufacturer’s instructions.
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Single-cell RNA sequencing library preparation. Single-cell capture, lysis,
reverse transcription, and pre-amplification were done using C1 chips (#¥100-5763,
10-17 pm) in the C1 single-cell Auto Prep System (Fluidigm) or the ICELL8™
Single-Cell System (Wafergen) following the manufacturer’s protocols. Libraries
were sequenced using an Illumina NextSeq 500 system.

Single cell ATAC-seq and raw data processing. Mouse CPCs were isolated as
described above, and 50,000 cells were cryopreserved in 90% FBS/10% DMSO until
further usage. The scATAC-seq experiments were performed as described pre-
viously32. Isolated cells were incubated in 50 pl tagmentation mix (33 mM Tris-
acetate, pH 7.8, 66 mM Potassium acetate, 10 mM magnesium acetate, 16%
dimethylformamide (DMF), 0.01% Digitonin and 2.5 ul Nextera Tn5) at 37 °C with
800 rpm for 30 min before adding 50 pl tagmentation stop buffer (10 mM Tris, pH
8.0, 20 mM EDTA) on ice for 5 min. Tagmented single cells were sorted into 384-
well plate containing 4 pl lysis buffer (50 mM Tris, pH 8.0, 50 mM NaCl, 20 ug/ml
Proteinase K, 0.2% SDS, 10 uM Nextera index primer mix) using a BD-INFLUX
sorter.

After sorting, the plate was briefly centrifuged and incubated at 65 °C for 30
min. Then, 4 pl 10% tween-20, 2 ul H20 and 10 ul NEBNext® High-Fidelity 2 x
PCR Master Mix were added to each well sequentially. Libraries were amplified
with 72 °C 5 min, 98 °C 5 min, [98°C 105, 63 °C 305, 72 °C 20 s] x 18. Finally, all
reactions were pooled together and purified with a PCR minElute purification
column (Qiagen). Libraries were sequenced with a Hiseq2000 machine after size
selection.

Reads were trimmed and mapped to the reference mouse genome (UCSC
mm10) using hisat2°!. Reads with mapping quality less than 30 were removed by
samtools (-q 30 flag) and deduplicated. All reads from single cells were merged
together using samtools, and the merged BAM file was deduplicated again. Peak
calling was performed on the merged and deduplicated BAM file by MACS2
resulting in union peaks2. A count matrix over the union of peaks was generated
by counting the number of reads from individual cells that overlap the union peaks
using coverageBed from the bedTools suite>.

Bulk ATAC-seq library preparation and sequencing. In all, 2000-20,000 GFP™
CPCs were FCAS-purified and used for ATAC-seq. The ATAC-seq libraries were
prepared as previously described!3. 2 x 50 paired-end sequencing was performed
on Illumina NextSeq500 to achieve on average of 35.08 + 12.53 million reads per
sample (Mean +s.d.) (Supplementary Data 5).

Bulk RNA-seq. A total of 5000-20,000 CPC cells were sampled using the same
protocol as described above for scRNA-seq. Bulk RNA-seq libraries were prepared
using Smart-seq2 according to the manufacturer’s protocol (Cat#634889, Clon-
tech), and sequenced using the Illumina NextSeq500 instrument. Raw reads were
processed using the same method as for scRNA-seq. Quantification and identifi-
cation of differentially expressed genes were carried out using DEseq2°4.

Single-cell RNA-seq data analysis. Low-quality bases were trimmed off the raw
sequencing reads using Reaper with a minimum median quality of 53 in a window
of 20 bases, omitting the first 50 bases of the read. Additionally, the -dust-suffix 20/
AT option was used to trim remaining polyA or polyT stretches at the end of reads
as well as stretches of B (a special Illumina Quality Score indicating non-
trustworthy bases) with the —bcq-late option. The STAR alignment tool was used
with default parameters to map trimmed reads to the mouse genome (version
mm10) and transcriptome (--quantMode TranscriptomeSAM, together with the
Gencode annotation in version vM10). Mapping quality and statistics was assessed
using Qualimap in rnaseq mode, setting the protocol to strand-specific-forward
and using the same Gencode annotation. The Qualimap output was used later for
single-cell filtering (see below). RSEM was used with gene annotations from
Gencode vM10 as well as a single-cell prior to assign reads to genes and extract
gene-centered counts.

A SingleCellExpression-Set object (SCESet, R package scater) was created in R
from all available metadata, cell-quality data, gene annotations, and the gene-
centered count table. For each platform (Fluidigm C1 (C1) or Wafergen (WQG)), an
initial cell-quality map was generated with t-SNE (R package Rtsne) by grouping
cells with similar quality metrics together (Supplementary Fig. 1). The (per-cell)
quality metrics used as input were: number of features (genes) detected with at least
10 counts, the percentage of gene dropouts, the number of alignments, the number
of alignments to exons, introns and intergenic regions, the number of secondary
alignments, the expression of Rplp0 (also known as 36B4) as housekeeping gene,
the percentage of read counts to mitochondrial genes, as well as the percentage of
genes detected.

To define cells as low-quality, we formulated and evaluated five criteria for each
cell: The percentage of counts to mitochondrial genes is 1.5 median-absolute-
deviations (MADs) above the median, the number of detected features is 2 MADs
above or below the median, the percentage of gene dropouts is 2 MADs above the
median, the Rplp0 expression is 2 MADs below the median and the percentage of
genes is 1.5 MADs above or below the median. Cells failing more than one criterion
were considered low-quality and excluded from further analysis. See
(Supplementary Fig. 1) for a graphical representation of cell filtering.

Similar to cell filtering, we defined two criteria for gene filtering: (1) gene
expression across all cells of a lineage (excluding cells from knockout and
overexpression experiments) exceeds 2000 counts and (2) at least 10 cells from a
lineage show gene expression above 10 counts. A gene was filtered if it failed at least
one criterion in both lineages. After filtering, count data of 12053 genes across 498
cells remained for further downstream analysis. Remaining count data were
normalized by separately applying the sum factor method, as implemented in the R
package scater, to cells from the two lineages.

We combined count tables obtained from wild-type cardiac single cells across
time points E8.5, E9.5, and E10.5, as well as from Nkx2-5 knockout cardiac cells'®
from E9.5 into a single SCESet object and filtered out cells that were identified as low-
quality. After filtering, count data from 11,781 genes across 2358 cells were used to
cluster cells using the quickCluster command from the R package scran. Sum factor
normalization was applied with deconvolution of size factors within obtained clusters.

Sum factor normalized counts were used to define heterogeneous genes within
lineages as well as at individual time points. Specifically, we calculated the
coefficient of variation as well as the dropout-rate per gene and investigated their
relationship to the mean expression of that gene. We next binned both (ordered)
statistics into windows of size 200 and scaled values (z-score transformation)
within windows. Genes for which one of the scaled statistics exceeded a 99-
percentile within its window where called heterogeneous.

We scaled normalized expression values of heterogeneous genes and used them
as input to dimension reduction by self-organizing maps (SOMs) for each lineage.
Briefly, SOMs or Kohonen Networks were treated as special cases of neuronal
networks, where no target vector containing class labels is necessary for training.
Instead, a map is initialized randomly for each cell, consisting of fewer map tiles
than input genes, effectively representing meta genes. During training, genes are
subsequently placed onto map tiles with the most similar meta gene representation.
Importantly, a gene ends upon the same map tile of all cell maps, therefore creating
a lower dimensional representation of the cell’s transcriptome using meta genes.
After 2000 training epochs, cell maps were further projected into two dimensions
by t-SNE (perplexity value of 15, 2000 epochs of convergence) and clustered with
HDBSCAN using a minimum cluster size of 7 and min_samples 9 (Fig. 1c, d;
Supplementary Fig. 2a, b).

Differentially expressed genes between cell clusters were assessed using MAST
on sum factor normalized counts (log2 scale). The MAST framework models gene
expression in a two-component generalized linear model, one component for the
discrete expression rate of each gene across cells and the other component for the
continuous expression level, given the gene is expressed. Additionally, we used a
gene ranking approach (SC3) to define marker genes specific for each cluster
(Supplementary Data Set 1, 2). To define lineage dynamics, we used all protein-
coding genes that were marker genes for a cluster (AUROC > 0.8, FDR < 0.01) and
differentially expressed in any cluster (lower bound of LEC > 2 or higher bound of
LFC < —2, FDR <0.01) as input to destiny (Fig. 2a, b).

For the critical transition index (I¢(c)), we computed the absolute marker gene-
to-gene and cell-to-cell correlations for each cluster and calculated the ratio of their
means (Supplementary Fig. 6a, b). To reduce influence from differing cell numbers
in clusters, we applied a bootstrapping procedure, randomly selecting 30 (20) cells
from a given Nkx2-5 lineage cluster or Isll lineage cluster repeating the procedure
1000 times. Pairwise cell-to-cell distances were calculated as described by
Mohammed and colleagues?S.

To define gene networks that play a role in lineage development, we assumed
that genes expression will either increase or decrease with lineage progression.
Therefore, we calculated the (global) Spearman’s Rank correlation of the expression
of each gene to the diffusion pseudotime from destiny. Since a gene might exhibit
its expression dynamics only within discrete states (clusters), we also calculated the
(local) Spearman’s rank correlation of gene expression to pseudotime within
clusters. We defined a gene as correlated gene, if it shows a global correlation of at
least 0.7 or a local correlation of at least 0.5 (Supplementary Data 3). Lineage-
specific correlated genes were used to identify gene networks. Genes within the
same sub-network show a high correlation (measured as Pearson’s Correlation),
but a lower correlation between sub-networks (Supplementary Fig. 7a, b). To
identify the dynamics of correlated genes, expression was smoothed along
pseudotime by calculating the mean expression in windows of 11 consecutive cells
(Supplementary Fig. 7c, d).

To join datasets from two different sequencing platforms, normalized
expression values from heterogeneous genes were used as input into the
mnnCorrect function from the R package scran. Briefly, mnnCorrect finds cells
from different platforms that have mutually similar expression profiles. This is
done by identification of pairs of cells that are mutual nearest neighbors, which can
be interpreted as belonging to the same cell state. For each MNN pair, the method
estimates a pair-specific correction vector. Those vectors are in turn averaged with
nearby MNN pair vectors from the same hyperplane using a Gaussian-Kernel to
obtain more stable cell-specific correction vectors. The procedure allows correction
of cells that are not part of any MNN pair, e.g. data set specific cells that were
sampled only on one platform. Corrected expression values were used for
clustering and differential expression analysis analogous to steps 6 and 7
(Supplementary Fig. 5).

Cell cycle scores were calculated for each known cell cycle stage (G1/S, S, G2,
G2/M, M/G1) using gene sets described by Whitfield et. al>°. Specifically, a raw
score was calculated as the average expression of genes in each set. To refine the
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score, we determined genes that correlated (rank correlation > 0.4) well with the
raw score and calculated the cell cycle score using those genes. Cell cycle scores
were z-score transformed (scaled) before plotting. A test of equal proportions was
then conducted for cycling cells among Isl1* and Isl1- cells.

Single-cell ATAC-seq data analysis. Annotation of union peaks to nearby
transcription start sites was performed using UROPA®S. Count matrices were
stored together with annotation data in a SingleCellExperiment object from the
corresponding Bioconductor package. Quality control was done similar to single-
cell RNA-seq data (Supplementary Fig. 11b-d): Briefly, a cell-quality map was
generated using the per-cell mapping rate, fraction of reads in peaks, fraction of
accessible peaks, mitochondrial content, read duplication level, log-scaled total
counts, and number of accessible peaks. To define low-quality cells, we evaluated
their mitochondrial content, the number of accessible peaks and the log-scaled
total-counts using outlier detection with a MADs of 2. Cells failing more than one
criterion were considered low-quality and excluded from further analysis.

Similar to cell filtering, we defined two criteria to filter peaks: (1) peak
accessibility was given in more than 35 cells and (2) the average count across all
cells was below 15, which effectively filters out peaks with exceedingly high
coverage. A peak was filtered if it failed at least one criterion. After cell and peak
filtering, data remained for 67368 peaks across 695 cells.

To reduce dimensions of the dataset, a binary datum of accessibility was derived
by transforming counts greater than 0 to 1 for remaining peaks. Binarized
accessibility was used as input for TF-IDF weighting, using term frequency and
smoothed inverse document frequency as weighting scheme. Weighted data were
reduced to 50 dimensions using SVD. After exclusion of the first SVD dimension,
t-SNE was used to project cells into two dimensions (perplexity value of 21, 2000
epochs of convergence, no PCA step). Cells within dense regions were clustered
using HDBSCAN with a minimum cluster size of 11 and min_samples of 9.

Peaks were tested for cluster specificity using an empirical Bayes regression-
based hypothesis testing procedure implemented in scABC?*. For each peak, the
cluster with lowest resulting p-value was chosen as reference cluster. TF-IDF
weighted accessibility from cluster-specific peaks with an adjusted p-value lower
than le-5 was then used as input to destiny to obtain a diffusion pseudo time
estimate for cells within each cluster.

To discover transcription factor dynamics and variation in their motif
accessibility we conducted analysis using chromVar3”. Briefly, we downloaded
position weight matrices (PWMs) for 579 known TFs from JASPAR and used
FIMO with default parameters to find transcription factor motif occurrences in
union peaks. Transcription factor motif to peak assignments were used in
conjunction with counts from 500 bp size fixed cluster-specific peaks to calculate
an accessibility deviation Z-score for each transcription factor motif/cell pair.

Integrated analysis of single cell RNA and ATAC-seq. Normalized gene
expression values from single-cell RNA-seq data was extracted for TFs with high
variability in their motif accessibility across clusters and cells (deviation Z-score >
1.5). Expression values were centered at their mean, ordered by their diffusion
pseudo time and smoothed using the mean within a window of size 15 prior to
visualization. Similarly, transcription factor motif deviation scores from single-cell
ATAC-seq data were ordered by diffusion pseudo time within a cluster and
smoothed (window size 13) prior to visualization.

Bulk ATAC-seq data analysis. Raw ATAC-seq paired-end reads were trimmed
and filtered for quality, and then aligned to the mouse genome GRCm38 (mm10)
using STAR®’. Reads that did not map, mapped non-uniquely, mapped to repe-
titive regions or to chromosome M, as wells as PCR duplicates were removed.

To remove the non-reproducible replicates, we calculated Spearman correlation
using aligned reads, in which the Spearman correlation was above 0.6 resulting in
at least two replicates for each developmental stage. For downstream analysis, the
read counts were normalized to 1 x depth (reads per genome coverage, RPGC)
using the bamCoverage function of deepTools2°8. Peak calling was performed
using callpeak function of MACS2%2 with the following parameters: --nomodel
--shift —100 --extsize 200 -q 0.05. Peaks in each sample were merged as union
peaks for calculation of peak counts. The normalized number of reads mapped to
each peak of the union peaks in each sample was quantified using
bigWigAverageOverBed [https://github.com/ENCODE-DCC/kentUtils]. Peak
counts of all samples were then merged to obtain a data matrix and normalized
with edgeR>. Differential accessible peaks were pairwise-compared sequentially
across each developmental stage.

The normalized read counts for each developmental stage across replicates were
merged, binned around all differential peak summits in 50 bp bins spanning + 1.5
kb region, clustered by k-means algorithm, and visualized by creating heat maps
using deepTools2°8.

The proximal and distal peaks are defined by the distance of differential ATAC-
seq peaks towards annotated promoters (Gencode annotation): peaks located at
least 2.5 kb away from promoters were selected as distal peaks while the others
were assigned as proximal peaks.

To compare ATAC-seq peaks with annotated distal cis-regulatory elements, the
ChIP-seq data of histone modifications H3K4mel, H3K4me3, H3K27ac and
H3K27me3 in E10.5 embryonic hearts>® were downloaded from NCBI Gene

Expression Omnibus (GEO) with the accession ID GSE86753, GSE86752,
GSE86723 and GSE86693. The peak density and overlap between ATAC-seq peaks
and histone modifications in distal regions (>2.5kb to TSS) were calculated using
bedGraph files and annotatePeaks function of Homer?’. The random peaks were
generated with the same size distribution as ATAC-seq peaks using shuffleBED
function of bedtools.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Code availability. The R scripts used for data analysis and simulations are freely
available on request or can be downloaded from GitHub [https://github.com/
loosolab/cardiac-progenitors].

Data availability

The authors declare that all data supporting the findings of this study are available
within the article and its supplementary information files or from the corre-
sponding author upon reasonable request. All raw and processed data are freely
available from the ENA repository and have been deposited under the accession
code PRJEB23303. A reporting summary for this article is available as a Supple-
mentary Information file. The source data underlying Figs. 1e, 2c, 2d, 2e, 2f, 5d and
8b and Supplementary Figs la—e are provided as a Source Data file.
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