1,140 research outputs found
The Onset of Nuclear Structure Effects in Near-Barrier Elastic Scattering of Weakly-Bound Nuclei: He and Li Compared
The elastic scattering of the halo nucleus He from heavy targets at
incident energies near the Coulomb barrier displays a marked deviation from the
standard Fresnel-type diffraction behavior. This deviation is due to the strong
Coulomb dipole breakup coupling produced by the Coulomb field of the heavy
target, a specific feature of the nuclear structure of He. We have
performed Continuum Discretized Coupled Channels calculations for the elastic
scattering of He and Li from Ni, Sn, Sm,
Ta and Pb targets in order to determine the range of
where this nuclear-structure specific coupling effect becomes
manifest. We find that the strong Coulomb dipole breakup coupling effect is
only clearly experimentally distinguishable for targets of .Comment: 10 pages with 3 figure
Failure of the Standard Coupled-Channels Method in Describing the Inelastic Reaction Data: On the Use of a New Shape for the Coupling Potential
We present the failure of the standard coupled-channels method in explaining
the inelastic scattering together with other observables such as elastic
scattering, excitation function and fusion data. We use both microscopic
double-folding and phenomenological deep potentials with shallow imaginary
components. We argue that the solution of the problems for the inelastic
scattering data is not related to the central nuclear potential, but to the
coupling potential between excited states. We present that these problems can
be addressed in a systematic way by using a different shape for the coupling
potential instead of the usual one based on Taylor expansion.Comment: 10 pages, 4 figures, 1 table, Latex:RevTex4 published in J. Phys. G:
Nucl. Part. Phy
Microfluidic preparation of polymer nanospheres
In this work, solid polymer nanospheres with their surface tailored for drug adhesion were prepared using a V-shaped microfluidic junction. The biocompatible polymer solutions were infused using two channels of the microfluidic junction which was also simultaneously fed with a volatile liquid, perfluorohexane using the other channel. The mechanism by which the nanospheres are generated is explained using high speed camera imaging. The polymer concentration (5-50 wt%) and flow rates of the feeds (50-300 µl min(-1)) were important parameters in controlling the nanosphere diameter. The diameter of the polymer nanospheres was found to be in the range of 80-920 nm with a polydispersity index of 11-19 %. The interior structure and surfaces of the nanospheres prepared were studied using advanced microscopy and showed the presence of fine pores and cracks on surface which can be used as drug entrapment locations
De novo Transcriptome Assemblies of Rana (Lithobates) catesbeiana and Xenopus laevis Tadpole Livers for Comparative Genomics without Reference Genomes
In this work we studied the liver transcriptomes of two frog species, the American bullfrog (Rana (Lithobates) catesbeiana) and the African clawed frog (Xenopus laevis). We used high throughput RNA sequencing (RNA-seq) data to assemble and annotate these transcriptomes, and compared how their baseline expression profiles change when tadpoles of the two species are exposed to thyroid hormone. We generated more than 1.5 billion RNA-seq reads in total for the two species under two conditions as treatment/control pairs. We de novo assembled these reads using Trans-ABySS to reconstruct reference transcriptomes, obtaining over 350,000 and 130,000 putative transcripts for R. catesbeiana and X. laevis, respectively. Using available genomics resources for X. laevis, we annotated over 97% of our X. laevis transcriptome contigs, demonstrating the utility and efficacy of our methodology. Leveraging this validated analysis pipeline, we also annotated the assembled R. catesbeiana transcriptome. We used the expression profiles of the annotated genes of the two species to examine the similarities and differences between the tadpole liver transcriptomes. We also compared the gene ontology terms of expressed genes to measure how the animals react to a challenge by thyroid hormone. Our study reports three main conclusions. First, de novo assembly of RNA-seq data is a powerful method for annotating and establishing transcriptomes of non-model organisms. Second, the liver transcriptomes of the two frog species, R. catesbeiana and X. laevis, show many common features, and the distribution of their gene ontology profiles are statistically indistinguishable. Third, although they broadly respond the same way to the presence of thyroid hormone in their environment, their receptor/signal transduction pathways display marked differences
T-shaped microfluidic junction processing of porous alginate-based films and their characteristics
In this work, highly monodisperse porous alginate films from bubble bursting were formed on a glass substrate at ambient temperature, by a T-shaped microfluidic junction device method using polyethylene glycol (PEG) stearate and phospholipid as precursors in some cases. Various polymer solution concentrations and feeding liquid flow rates were applied for the generation of monodisperse microbubbles, followed by the conversion of the bubbles to porous film structures on glass substrates. In order to compare the physical properties of polymeric solutions, the effects of alginate, PEG stearate (surfactant), and phospholipid concentrations on the flowability of the liquid in a T-shaped microfluidic junction device were studied. To tailor microbubble diameter and size distribution, a method for controlling the thinning process of the bubbles’ shell was also explored. In order to control pore size, shape, and surface as well as internal structure morphologies in the scalable forming of alginate polymeric films, the effect of the feeding liquid’s flow rate and concentrations of PEG-stearate and phospholipid was also studied. Digital microscopy images revealed that the as-formed alginate films at the flow rate of 100 µL·min−1 and the N2 gas pressure of 0.8 bar have highly monodisperse microbubbles with a polydispersity index (PDI) of approximately 6.5%. SEM captures also revealed that the as-formed alginate films with high PDI value have similar monodisperse porous surface and internal structure morphologies, with the exception that the as-formed alginate films with the help of phospholipids were mainly formed under our experimental environment. From the Fourier-transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) measurements, we concluded that no chemical composition changes, thermal influence, and crystal structural modifications were observed due to the T-shaped microfluidic junction device technique. The method used in this work could expand and enhance the use of alginate porous films in a wide range of bioengineering applications, especially in tissue engineering and drug delivery, such as studying release behaviors to different internal and surface morphologies
Clinical implication of genome-wide profiling in diffuse large B-cell lymphoma and other subtypes of B-cell lymphoma.
The differentiation of lymphoid cells is tightly regulated by transcription factors at various stages during their development. During the maturation processes, different genomic alterations or aberrations such as chromosomal translocation, mutation and deletions may occur that can eventually result in distinct biological and clinical tumors. The different differentiation stages create heterogeneity in lymphoid malignancies, which can complicate the diagnosis. The initial diagnostic scheme for lymphoid diseases was coined by Rappaport followed by Revised European and American Classification of Lymphoid Neoplasms (REAL) and World Health Organization (WHO) classifications. These classification methods were based on histological, immunophenotypic and cytogenetic markers and widely accepted by pathologists and oncologists worldwide. During last several decades, great progress has been made in understanding the etiology, pathogenesis and molecular biology of malignant lymphoma. However, detailed knowledge in the molecular mechanism of lymphomagenesis is largely unknown. New therapeutic protocols based on the new classification have been on clinical trials, but with little success. Therefore, it is imperative to understand the basic biology of the tumor at molecular level. One important approach will be to measure the activity of the tumor genome and this can partly be achieved by the measurement of whole cellular mRNA. One of the key technologies to perform a high-throughput analysis is DNA microarray technology. The genome-wide transcriptional measurement, also called gene expression profile (GEP) can accurately define the biological phenotype of the tumor. In this review, important discoveries made by genome-wide GEP in understanding the biology of lymphoma and additionally the diagnostic and prognostic value of microarrays are discussed
Utilization of microfluidic V-junction device to prepare surface itraconazole adsorbed nanospheres.
Itraconazole is widely used as an anti-fungal drug to treat infections. However its poor aqueous solubility results in low bioavailability. The aim of the present study was to improve the drug release profile by preparing surface itraconazole adsorbed polymethylsilsesquioxane (PMSQ) nanospheres using a V-junction microfluidic (VJM) device. In order to generate nanospheres with rough surface, the process flow rate of Perfluorohexane (PFH) was set between 50 and 300 μl min(-1) while the flow rate of PMSQ and itraconazole solution were constant at 300 μl min(-1). Variations in the PFH flow rate enable the controlled size generation of nanospheres. PMSQ nanospheres adsorbing itraconazole were characterized by SEM, FTIR and Zetasizer. The release of itraconazole from PMSQ nanosphere surface was measured using UV spectroscopy. Nanosphere formulations with a range of sphere size (120, 320 and 800nm diameter) were generated and drug release was studied. 120nm itraconazole coated PMSQ nanospheres were found to present highest drug encapsulation efficiency and 13% drug loading in a more reproducible manner compared to 320nm and 800nm sized nanosphere formulations. Moreover 120nm itraconazole coated PMSQ nanospheres (encapsulation efficiency: 88%) showed higher encapsulation efficiency compared to 320nm (encapsulation efficiency: 74%) and 800nm (encapsulation efficiency: 62%) sized nanosphere formulations. The itraconazole coated PMSQ nanospheres were prepared continuously at rate of 2.6×10(6) per minute via VJM device. Overall the VJM device enabled the preparation of monodisperse surface itraconazole adsorbed nanospheres with controlled in vitro drug release profile
Global Examination of the C+C Reaction Data at Low and Intermediate Energies
We examine the C+C elastic scattering over a wide energy range
from 32.0 to 70.7 MeV in the laboratory system within the framework of the
Optical model and the Coupled-Channels formalism. The C+C system
has been extensively studied within and over this energy range in the past.
These efforts have been futile in determining the shape of the nuclear
potential in the low energy region and in describing the individual angular
distributions, single-angle 50 to 90 excitation functions and
reaction cross-section data simultaneously. In order to address these problems
systematically, we propose a potential that belongs to a family other than the
one used to describe higher energy experimental data and show that it is
possible to use it over this wide energy range. This potential also predicts
the resonances at correct energies with reasonable widths.Comment: 30 pages with 13 eps figues and 3 tables, LaTeX-Revtex
- …