3,065 research outputs found
Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion
This paper explores the long-term evolution of a subglacial fjord landscape in the Shackleton Range, Antarctica. We propose that prolonged ice-sheet erosion across a passive continental margin caused troughs to deepen and lower the surrounding ice-sheet surface, leaving adjacent mountains exposed. Geomorphological evidence suggests a change in the direction of regional ice flow accompanied emergence. Simple calculations suggest that isostatic compensation caused by the deepening of bounding ice-stream troughs lowered the ice-sheet surface relative to the mountains by ~800m. Use of multiple cosmogenic isotopes on bedrock and erratics (26Al, 10Be, 21Ne) provides evidence that overriding of the massif and the deepening of the adjacent troughs occurred earlier than the Quaternary. Perhaps this occurred in the mid-Miocene, as elsewhere in East Antarctica in the McMurdo Dry Valleys and the Lambert basin. The implication is that glacial erosion instigates feedback that can change ice-sheet thickness, extent, and direction of flow. Indeed, as the subglacial troughs evolve over millions of years, they increase topographic relief; and this changes the dynamics of the ice sheet. © 2013 Elsevier B.V
Recommended from our members
Increasing thermal plant flexibility in a high renewables power system
Thermal generation is a vital component of mature and reliable electricity markets. As the share of renewable electricity in such markets grows, so too do the challenges associated with its variability. Proposed solutions to these challenges typically focus on alternatives to primary generation, such as energy storage, demand side management, or increased interconnection. Less attention is given to the demands placed on conventional thermal generation or its potential for increased flexibility. However, for the foreseeable future, conventional plants will have to operate alongside new renewables and have an essential role in accommodating increasing supply-side variability.
This paper explores the role that conventional generation has to play in managing variability through the sub-system case study of Northern Ireland, identifying the significance of specific plant characteristics for reliable system operation. Particular attention is given to the challenges of wind ramping and the need to avoid excessive wind curtailment. Potential for conflict is identified with the role for conventional plant in addressing these two challenges. Market specific strategies for using the existing fleet of generation to reduce the impact of renewable resource variability are proposed, and wider lessons from the approach taken are identified
10Be in Ice Cores and 14C in Tree Rings: Separation of Production and Climate Effects
Cosmogenic radionuclides are more and more used in solar activity reconstructions. However, the cosmogenic radionuclide signal also contains a climate component. It is therefore crucial to eliminate the climate information to allow a better interpretation of the reconstructed solar activity indices. In this paper the method of principal components is applied to 10Be data from two ice cores from opposite hemispheres as well as to 14C data from tree rings. The analysis shows that these records are dominated by a common signal which explains about 80% of the variance on multi decadal to multi millennial time scales, reflecting their common production rate. The second and third components are significantly different for 14C and 10Be. They are interpreted as system effects introduced by the transport of 10Be and 14C from the atmosphere where they are produced to the respective natural archives where they are stored. Principal component analysis improves significantly extraction of the production signal from the cosmogenic isotope data series, which is more appropriate for astrophysical and terrestrial studie
Performance data of US Naval Observatory VLG-11 hydrogen masers since September, 1983
In 1983, two VLC-11 masers were delivered to the U.S. Naval Observatory by the Smithsonian Astrophysical Observatory. Last year the short-term stability of these masers was reported and the effect of this short-term stability on timekeeping performance was examined. Since the date of installation, 13 September 1983, data on the masers' long-term performance have been accumulated. The Allan variance, agma(tau), of the relative frequency between the masers reaches a minimum of about 4 parts in 10 to the 16th power at averaging times 5,000 seconds and rises at longer averaging times due, at least partly, to systematic frequency drift. The systematic frequency drifts, expressed in units of fractional frequency difference per day are discussed
16th IHIW: Immunogenetics of Aging
Ageing is a process characterised by progressive loss of
function in multiple different organ systems, such as
the nervous, endocrine and immune systems. Current
data showing that ageing processes may be associated
with alterations in the immune system suggest that
some of the genetic determinants of senescence might
be polymorphic genes that regulate immune responses.
The ‘Immunogenetics of Aging’ programme was a
component introduced in the 14th International HLA
and Immunogenetics Workshop (IHIWS) and developed
further within the 15th and 16th. The aim of this
component was to determine the contribution of
immune genes to successful ageing and an increased
capacity to reach the extreme limits of lifespan. Within
the 16th IHIWS, new populations were included, and
the number of samples analysed was increased. Analysis
was focused on innate immunity genes (KIR and
MBL2) and their correlation with CMV serostatus.
Collaborative studies suggested that both activating
and inhibitory KIR and functionally relevant MBL2
haplotypes are important factors for control of CMV
infection in the elderly and therefore for chronic
low-grade inflammation. Results showed that these
genes might be predictive biomarkers in ageing and longevity. Prevalence of MBL2 haplotypes determining
absence of the protein (LYPB, LYQC and HYPD) was
observed in elderly people with a higher CMV antibody
titre. The high CMV titre was also associated
with a decreased frequency of the activatory KIR2DS5
and A1B10 haplotypes in elderly. Due to the role of
KIR and low or deficient MBL haplotypes in viral
infections, these genetic markers could be considered
as indicators of a need for CMV prophylaxis at younger
age and therefore increased probability of longer
lifespan
Microtiming patterns and interactions with musical properties in Samba music
In this study, we focus on the interaction between microtiming patterns and several musical properties: intensity, meter and spectral characteristics. The data-set of 106 musical audio excerpts is processed by means of an auditory model and then divided into several spectral regions and metric levels. The resulting segments are described in terms of their musical properties, over which patterns of peak positions and their intensities are sought. A clustering algorithm is used to systematize the process of pattern detection. The results confirm previously reported anticipations of the third and fourth semiquavers in a beat. We also argue that these patterns of microtiming deviations interact with different profiles of intensities that change according to the metrical structure and spectral characteristics. In particular, we suggest two new findings: (i) a small delay of microtiming positions at the lower end of the spectrum on the first semiquaver of each beat and (ii) systematic forms of accelerando and ritardando at a microtiming level covering two-beat and four-beat phrases. The results demonstrate the importance of multidimensional interactions with timing aspects of music. However, more research is needed in order to find proper representations for rhythm and microtiming aspects in such contexts
A First Order Predicate Logic Formulation of the 3D Reconstruction Problem and its Solution Space
This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added
SPT-3G: A Next-Generation Cosmic Microwave Background Polarization Experiment on the South Pole Telescope
We describe the design of a new polarization sensitive receiver, SPT-3G, for
the 10-meter South Pole Telescope (SPT). The SPT-3G receiver will deliver a
factor of ~20 improvement in mapping speed over the current receiver, SPTpol.
The sensitivity of the SPT-3G receiver will enable the advance from statistical
detection of B-mode polarization anisotropy power to high signal-to-noise
measurements of the individual modes, i.e., maps. This will lead to precise
(~0.06 eV) constraints on the sum of neutrino masses with the potential to
directly address the neutrino mass hierarchy. It will allow a separation of the
lensing and inflationary B-mode power spectra, improving constraints on the
amplitude and shape of the primordial signal, either through SPT-3G data alone
or in combination with BICEP-2/KECK, which is observing the same area of sky.
The measurement of small-scale temperature anisotropy will provide new
constraints on the epoch of reionization. Additional science from the SPT-3G
survey will be significantly enhanced by the synergy with the ongoing optical
Dark Energy Survey (DES), including: a 1% constraint on the bias of optical
tracers of large-scale structure, a measurement of the differential Doppler
signal from pairs of galaxy clusters that will test General Relativity on ~200
Mpc scales, and improved cosmological constraints from the abundance of
clusters of galaxies.Comment: 21 pages, 9 figures. To be published in Proceedings of SPIE Volume
9153. Presented at SPIE Astronomical Telescopes + Instrumentation 2014,
conference 915
- …