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This paper defines the 3D reconstruction problem as the process of reconstructing a 3D
scene from numerous 2D visual images of that scene. It is well known that this problem is
ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algo-
rithms in order to reduce the solution space. Unfortunately, most constraints only work
in a certain range of situations and often constraints are built into the most fundamental
methods (e.g. Area Based Matching assumes that all the pixels in the window belong
to the same object). This paper presents a novel formulation of the 3D reconstruction
problem, using a voxel framework and first order logic equations, which does not contain
any additional constraints or assumptions. Solving this formulation for a set of input
images gives all the possible solutions for that set, rather than picking a solution that is
deemed most likely. Using this formulation, this paper studies the problem of uniqueness
in 3D reconstruction and how the solution space changes for different configurations of
input images. It is found that it is not possible to guarantee a unique solution, no matter
how many images are taken of the scene, they’re orientation or even how much colour
variation is in the scene itself. Results of using the formulation to reconstruct a few small
voxel spaces are also presented. They show that the number of solutions is extremely
large for even very small voxel spaces (5x5 voxel space gives 10 to 107 solutions). This
shows the need for constraints to reduce the solution space to a reasonable size. Finally,
it is noted that because of the discrete nature of the formulation, the solution space size
can be easily calculated, making the formulation a useful tool to numerically evaluate
the usefulness of any constraints that are added.
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1. Introduction

What do you see when you look at an apple? Well, hopefully you see an apple
sitting in front of you. But how can you be sure that there is an apple there at all?
Well, you could reach out and grab it, but assume for one moment that you only
have your sense of vision.

In order to be sure that there is an apple there at all, there needs to be a unique
solution to your vision task. That is, there needs to be only one possible three
dimensional space corresponding to the two images which you see through your
eyes.

Unfortunately, this is impossible, there will always be more than one solution to
this problem. Simply think of the headsets in Virtual Reality systems. These place
small LCD displays in front of each eye. If the correct images are fed into these
then the user can be given the false impression that an apple is hovering in the air
a few meters away. So, when you look at that apple, how do you know whether it
is really there or if there are two little displays in front of your eyes?

Thus, we already have two solutions for the same vision perception. There can
easily be more, hundreds or thousands of potential solutions, the exact number
depending on the resolution of the 3D space (assuming a discrete spatial frame-
work) and the exact images perceived. Two stereo images of an apple will have
a considerably smaller solution space than, say, two stereo images showing only
blackness.

Of course, these other solutions rarely trouble us in our day to day lives because
we know from prior experience that if we see two stereo images of an apple, then
there is most probably an apple sitting in front of us. Unfortunately, these other
solutions do trouble us in the field of 3D computer vision. The problem of recon-
structing a 3D object or scene from many 2D images is made difficult because the
problem is an ill-posed one. The possible solution space for nearly all problems is
huge!

In order to reduce the solution space for the 3D reconstruction problem, many
constraints have been researched and implemented that attempt to reduce the so-
lution space and improve the final reconstructed solution. Many constraints have
arisen out of research into human 3D vision or through observations about the envi-
ronment around us (e.g. The smoothness constraint, which forces any reconstructed
surfaces to be smooth).

Many of the problems associated with 3D reconstruction methods come about
because constraints and assumptions are used that do not hold for all situations (e.g.
The smoothness constraint typically holds over the surface of a single object, but
there are usually discontinuities in depth between multiple objects) . This problem
is made worse by the fact that there are constraints and assumptions built in at a
fundamental level in the most commonly used matching techniques. For example,
the concept of matching corresponding pixels in order to calculate the 3D positions
of the point they represent ignores monocular regions and the 3D information that
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they can contribute (e.g. linear perspective, occultation, shading, shadow, texture7).
As another example, windowing techniques used to match pixels assume that all
the pixels inside the window belong to the same population of pixels (i.e. the same
object). This problem can be eased through the use of Transform based methods
18 but the basic problem remains.

This paper presents a formulation of the 3D reconstruction problem using a
voxel (3D volume elements with opacity and colour) framework and first order
predicate logic equations. Since this paper is attempting to investigate only the
theoretical properties of the 3D reconstruction problem, this formulation is purely
theoretical. It does not take into account photometric distortions that yield corre-
sponding points with quite different gray values or colours. Instead, it assumes that
each pixel in the images has exactly the same colour as the voxel it projects upon.

2. Background and Related Work

2.1. Volumetric Framework

A digital image discretises the image space it occupies into areas called pixels. These
pixels have position, size, shape and colour. A Voxel is simply a three-dimensional
pixel. It is a volume in 3D space that is assigned a colour and an opacity. For a good
overview of existing voxel-based reconstruction methods, see either Slabough’s 16

or Dyer’s 5 work.
A discrete or voxel representation of 3D space is convenient and commonly used

when looking at stereo image matching. Marr and Poggio 12 formulated one of the
earliest stereo matching algorithms using this representation. More recently, Intille
and Bobik 8 9 2 created a stereo image representation called the disparity-space
image or DSI.

Seitz and Dyer 15 also used a voxel representation of space, but they focused
on many input images, rather than restricting themselves to stereo images. By
placing constraints on the positioning of the camera to eliminate the problem of
occlusions, Seitz and Dyer present an algorithm for reconstructing a 3D scene by
finding colour invariant voxels using a technique called Voxel Colouring. The voxel
space is traversed outward from the centre of the camera volume and each voxel is
projected onto the input images. If the voxel projects upon inconsistent colours in
the images, then it is deemed to be transparent. Otherwise the voxel is labelled with
the colour of its projections and added to the set of colour invariant voxels. In this
way a solution called the photo hull is built up. All the voxels on the surface of the
photo hull are colour invariant and all the possible solutions of the 3D reconstruction
problem (i.e. all photo-consistent shapes) are contained within the photo hull.

Kutulakos and Seitz 10 proposed a similar technique called Space Carving, so
named because the colour inconsistent voxels are ”carved” away to leave the photo
hull behind. This technique places no restrictions on the placement of the cameras
but it does place restriction on how many cameras are used at each iteration.
The algorithm progresses by sweeping a horizontal plane through the voxel space,
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carving away the colour inconsistent voxels as it goes. Only cameras behind the
plane (i.e. those that have been carved out) are used to carve away new voxels.

Culbertson and Malzbender 4 built on Voxel Coloring and Space Carving to
produce Generalized Voxel Coloring. This places no constraints on the cameras and
uses all the cameras at every stage of the algorithm. On a side note, our paper
paper uses the same concept of classifying voxels into Surface, Transparent and
Inside voxels as was done in 4.

There have been many other algorithms developed that carve away colour in-
consistent voxels to find the photo hull. Notably, Slabaugh, Malzbender and Cul-
bertson 17 have created a Voxel Colouring algorithm that works on an infinite or
semi-infinite sized voxel space. Saito and Kanade 14 have developed a variation that
works on a projective grid space. Finally, De Bonet and Viola 3 attempt to bridge
the gap between 3D computer vision and tomography by allowing their voxels to
have both colour and variable opacity.

Similar to the idea of the photo hull is the visual hull 13. A visual hull is con-
structed by calculating the intersection of all the silhouettes in all the input images.
It too contains all of the solutions to the 3D reconstruction problem within its vol-
ume.

All of the techniques above aim to calculate a single shape (the photo or visual
hull) that is the union of all the possible solutions of the 3D reconstruction problem.
However, these hulls contain no information on the size of the solution space or the
possible shapes that lie within the hull. This information can give valuable insights
into the nature of the 3D reconstruction problem. For example, the size of the
solution space can be a useful indicator of the quality of reconstruction. Obviously,
the smaller the solution space, the more likely you are to pick the true shape. The
formulation presented in this paper reconstructs the entire solution space, not just
the photo or visual hull.

2.2. Logical Formulation

There is no known (to this author) formulation of low level 3D reconstruction that
uses logical equations. Logic and Knowledge Based Modelling is used as a high
level tool to classify individual object in the disparity maps and models calculated
using traditional methods. Using a priori information, these maps and models can
be improved by altering the representation of each classified object to better fit the
known models 6 11. However, there has been no attempt to model the problem of
3D reconstruction using a logical formulation from the ground up, as is done in this
document.

2.3. Analysis of the Solution Space

Kutulakos and Seitz 10 present a similar (to this paper) analysis of uniqueness in
their paper on Space Carving. They acknowledge that trivial solutions like that
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described in Section 5.3 and Figure 7 prevent the solution space from ever con-
taining a single unique solution. They state that the implementation of free-space
constraints (i.e. Constraining the solution to lie within a certain volume) can elim-
inate this problem. However, as our results in Section 6 show, this constraint does
not do enough to reduce the solution space to manageable proportions.

Baker, Sim and Kanade 1 recently wrote an interesting paper asking when the
shape of a scene was unique given its light-field. The light-field is a continuous
function that specifies the radiance of light from the scene (see 1 for more details).
They conclude that unless there are extended regions of constant intensity in the
scene, there will always exist (theoretically at least) a single unique solution to the
3D reconstruction problem. One major difference between Baker et al.’s analysis
and ours is that we are looking at the problem from a discrete point of view. Another
is that the results in this paper show how ill-posed the 3D reconstruction problem
is, and how difficult it is to reduce the solution space down to a reasonable number
of solutions, let along a single unique one.

3. First Order Logic framework

This section formulates the problem of 3D reconstruction using a voxel framework
and first order predicate logic.

Consider a single voxel V in the 3D voxel space S.

∃V : V ∈ S

Fig. 1. 3D and 2D Voxel Space

This voxel projects onto m pixels (p) in n images (I) of the scene. These images
are a subset of the total number of images in the scene. If I is defined as the total
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set of images, and p project(i, V ) returns the pixel that voxel V projects onto in
image i, then the set of pixels and images that a voxel projects onto can be defined
as:

projectV = {p | ∃i : i ∈ I : p = p project(i, V )}
projectImagesV = {i | ∃p : p ∈ projectV : p ∈ i}

Fig. 2. Each voxel projects onto m pixels in n images

Now if each of these pixels are projected out from the focal point of the corre-
sponding image, each of these projected lines form that pixel’s light ray. Note that
there is a one to one relationship between each pixel and its ray, so from now on in
this document, the symbol p will refer to both to a pixel and its ray.

The set of voxels that a pixel’s ray passes through is given the symbol Rp

Rp = {v | p ∈ projectv}
A pixel’s ray passes through three sets of voxels. There is the set of voxels before

the voxel V

BV
p = {v | v ∈ Rp ∧ depth(v, p) < depth(V, p)}

Where depth(v, p) returns the number of voxels between v and the origin of p

(the actual pixel). Then there is the set of voxels after the voxel V

AV
p = {v | v ∈ Rp ∧ depth(v, p) > depth(V, p)}

Finally there is the set of the voxels equal in depth to voxel V . This is of course
a set containing only V .

AtVp = {v | v ∈ Rp ∧ depth(v, p) = depth(V, p)}
AtVp = {V }
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Fig. 3. The set of voxels that a pixel’s ray passes through

Of course, not every ray can travel on unimpeded forever. With respect to voxel
V , each ray can have one of three properties:

(1) The ray can stop (i.e. project upon a filled voxel) before voxel V

before(V, p) ⇐⇒ ∃v1 : v1 ∈ BV
p : color(v1) = color(p)

∧ (∀v2 : v2 ∈ Bv1
p : color(v2) = TRANSPARENT

)

(2) The ray can stop at voxel V

at(V, p) ⇐⇒ ∃v1 : v1 ∈ AtVp : color(v1) = color(p)

∧ (∀v2 : v2 ∈ Bv1
p : color(v2) = TRANSPARENT

)

at(V, p) ⇐⇒ color(V ) = color(p) ∧ (∀v : v ∈ BV
p : color(v) = TRANSPARENT

)

(see below for the definition of the set Transparent)

(3) The ray can stop after voxel V

after(V, p) ⇐⇒ ∃v1 : v1 ∈ AV
p : color(v1) = color(p)

∧ (∀v2 : v2 ∈ Bv1
p : color(v2) = TRANSPARENT

)

(4) The ray does not stop in the voxel area

background(p) ⇐⇒ ∀v : v ∈ Rp : color(v) = TRANSPARENT

Each voxel in the 3D space S can be assigned to three possible sets determined by
the properties of the rays passing through them.

(1) A voxel is judged to be a transparent voxel (i.e. not filled) if all the rays passing
through it do not stop at and at least one stops after that particular voxel

Transparent(v) ⇐⇒ ∀p : v ∈ Rp : (before(v, p) ∨ after(v, p) ∨ background(p))

∧ (∃p : v ∈ Rp : (after(v, p) ∨ background(v, p))

Transparent(v) ⇐⇒ color(v) = TRANSPARENT



July 30, 2003 10:48 WSPC/INSTRUCTION FILE ijprai2003

8 Martin Robinson, Kurt Kubik, Brian Lovell

(2) A voxel is judged to be a surface voxel (i.e. filled with a known colour) if all
the rays passing through it do not stop after and at least one stops at that
particular voxel

Surface(v) ⇐⇒ ∀p : v ∈ Rp : (before(v, p) ∨ at(v, p)) ∧ (∃p : v ∈ Rp : at(v, p))

Surface(v) ⇐⇒ color(v) 6= TRANSPARENT

(3) A voxel is judged to be an inside voxel (i.e. either enclosed inside an object
or not seen by any images) if all the rays passing through it stop before that
particular voxel

Inside(v) ⇐⇒ ∀p : v ∈ Rp : before(v, p)

Each voxel is one of these three types.

∀v : v ∈ S : (Transparent(v) ∨ Surface(v) ∨ Inside(v))

4. A Simplified Voxel Space

In order to understand the problem better, it was decided that the equation system
be solved for a simple version of the 3D reconstruction problem. Solving such a
reduced problem should, in theory, be simple and it should give a greater under-
standing into the uniqueness, stability and solvability of the problem as a whole.

The voxel space is scaled down from three dimensions to two. This has the
additional advantage that it is easy to present a visualisation of the voxel space.
The focal point of each image is set at infinity, so all the pixel rays are perpendicular
to the image planes.

5. Uniqueness

The ideal situation would be if we could obtain a unique solution to our problem
of 3D reconstruction. But, unfortunately, the results obtained even for very small
voxel space (e.g. 2x2, 1x1) are far from unique. See Figure 4 for a few sample results.

5.1. Is it possible to get a unique solution?

The answer to this questions is yes. It is possible to get a unique solution. But it is
only possible to get a unique solutions for certain input images. Consider the input
images in Figure 5. None of the input images have a common pixel colour, so the
only possible solution is a totally transparent voxel space (i.e. a null space).

Unfortunately, this is not really useful to us. Is it only possible to get a unique
solutions if that solution is totally transparent? It is easy to see that, given any
number of input images and any size voxel space (except an infinite size), a pos-
sible solution will always be a totally transparent voxel space. From the problem
formulation, a pixel’s ray will pass all the way through the voxel space if all the
voxels in the ray are transparent.

background(p) ⇐⇒ ∀v : v ∈ Rp : color(v) = TRANSPARENT
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Note on symbols used:

  T stands for a Transparent voxel.

  X stands for an Inside voxel (a voxel that is not seen by any camera).

  Any number stands for a filled voxel with that colour.
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Fig. 4. Some sample results

Fig. 5. Example input images that give a unique solution

Because this equation does not depend on the colour of pixel p, it is always pos-
sible that all pixels are background pixels and the voxel space is totally transparent.

So, since the totally transparent solution is always a possible solution, it is
impossible to get a unique solution unless that solution is the totally transparent
solution. However, it is not practical to include a totally transparent voxel space
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as a possible solution. Who would want to reconstruct an empty scene? So let us
temporarily (for the rest of Section 5 only) add the following constraint to our
formulation.

∀pixel : background(pixel) → false

This constraint ensures that all pixel rays stop inside the voxel space and that
a totally transparent voxel space is never a possible solution.

With this new constraint in place, is it now possible to obtain a unique and
useful solution? Well, it is easy to give an example set of input images that will
result in a unique solution (see Figure 6), but is this really useful? In any practical
problem, the only parameters of the 3D reconstruction problem the user has any
control over are the number, positions and orientation of the cameras. So what
is really needed is a configuration of input images that will always give a unique
solution, no matter what the 3D scene or pixel colours are.

Fig. 6. Example input images that give a unique solution (with ∀pixel : background(pixel) → false
constraint)

5.2. Is there a image configuration that guarantees a unique

solution?

It is easy to see that there is no image configuration that guarantees a unique solu-
tion for any input image combination, even with the constraint of no background
pixel rays introduced in Section 5.1. Consider the case where all the input images
used in a reconstruction are black. No matter how many images you have, in what-
ever position and orientation, there will always (except for a voxel space with only
one voxel in it) be more than one solution.

The reason why a totally black set of input images will never yield a unique
solution is because of the lack of colour variation. Two pixel rays with different
colours will always yield less solutions than two pixel rays with identical colours. So
the more distinct colours in a set of input images, the smaller the solution space.



July 30, 2003 10:48 WSPC/INSTRUCTION FILE ijprai2003

A First Order Logic Formulation of the 3D Reconstruction Problem 11

This immediately raises the question, is it possible to obtain a unique solution
given sufficient colour variation in the input images. Since at this point there is no
information as to how much colour variation is “sufficient”, we can assume that
there is maximum colour variation in the images. i.e. there is as many pixel colours
as there is pixels.

5.3. Given maximum colour variation, can a unique solution be

guaranteed?

Assume we have a very large, but finite, number of images. These images can be
placed anywhere in the voxel space at any orientation. Now, assume that there is
an equal number of 3D surfaces. Each surface has a corresponding image, and each
surface is placed in the voxel space just in front of that image. The surfaces are one
voxel thick, with the same width and breadth as their corresponding images. The
voxel colours of these surfaces are exactly the same as the pixel values of their cor-
responding images. Figure 7 shows a graphical representation of this configuration.
The filled-in voxels represent the surfaces in front of each camera.

Fig. 7. Whatever the image pixel values, these surfaces will always be a possible solution

No matter what the pixel values of the input images were, these surfaces would
be a valid and therefore possible solution. So, unless this is exactly the scene that
you wish to reconstruct, it is impossible to obtain a unique solution, no matter how
many images you have, their orientations or the amount of colour variation in the
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scene.
This problem is exactly the flaw in the human vision system that can and is

often used to provide us with Virtual Reality, or VR. In many VR environments, a
user is given a headset that contains two small LCD displays that are placed directly
in front of the users eyes when he/she puts the headset on. Once the displays are
fed the correct images, the users sense of sight is fooled into believing that the user
is in a virtual 3D environment.

6. Results of Solving Formulation for a Sample Input

This section shows the results of solving the formulation for a few different sets of
input images.

6.1. Input Image Configurations

The testing was done using a total of eight images, spaced evenly around the voxel
space, all pointing inward. The basic set up is shown in Figure 8.

Fig. 8. Image Configuration (numbers are pixel numbers, not colours)

The numbers in the image pixels are pixel numbers, not colours. The pixels
are numbered in the order in which they are processed. Naturally enough, the
order in which they are processed affects the results. For example, if the first five
pixels to be added are from five different images, you would expect the number of
possible solutions using these five pixels to be less than if the first five were from
the same image. However, after all the pixels have been processed, the final number
of solutions will be the same, no matter what the processing order.
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As can be seen from Figure 8, the images and voxel space used are very small.
Only 2D spaces are used and the voxel space is only 5x5. This is done because of
the processing times needed. Even for these small voxel space sizes some of the
solution spaces are huge (over 107 solutions). For larger voxel spaces the growth
in the number of solutions is exponential, because for each new voxel added, every
existing solution will produce (on average) n

2 new solutions, where n is the number
of possible states for that voxel. The number of possible states is the number of
different colored pixel rays passing through the voxel plus one, since the voxel can
also be transparent.

Only rendered images are used. This way there are no photometric distortions
or lens-induced aberrations of real cameras that yield corresponding points with
quite different colours. For convenience, the images are rendered with infinite focal
lengths, so that they record a parallel projection of the scene. Finally, any pixel
that does not project upon a voxel in the scene is removed from consideration. This
is why, in Figure 11, the plots for Shape only go up to x = 35, not 40.

6.2. Voxel Spaces

The voxel space is a 5x5x1 array of voxels. The following voxel configurations were
tested.

6.2.1. Rect (Rectangle)

This voxel configuration is a simple rectangle the exact same size of the voxel
space. Different Rect configurations have different texture or colour information.
Rect1 gives all the surface voxels a unique colour. Rect2 has each colour occurring
in blocks of two voxels, and so has half the number of different colours as Rect1.
Rect16 gives all the surface voxels the exact same colour. Rect Bland is similar to
Rect1 except there is a large area with a constant colour. Rect Repeat is similar to
Rect Bland except that the large area is covered in a repeating texture. See Figure
9 for the different voxel configurations under this class.

6.2.2. Shape (Strange Looking Shape)

The different configurations of Shape are similar to Rect, except that the surface
voxels form a strange looking shape. Note that there is no Shape16 corresponding
to Rect16 since any images of these two configurations would be exactly the same.

6.3. Results

These experiments aim to calculate the solution space using the logical formulation
and the image’s pixel values and position/orientation information. No constraints
are added, so the solution space is comprised of all the possible solutions that satisfy
the logic equations set out in Section 3.
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The results are set out in plots of Number of Possible Solutions versus Number
of Pixels. So if Number of Pixels = 5 and Number of Possible Solutions = 2000,
this means that, after the program had taken into account pixels 1-5, there were
2000 solutions that projected correctly onto these pixels and satisfied the logical
formulation.

The first thing to point out about the results is that the number of possible
solutions starts at one. This may seem somewhat counter-intuitive. Surly when
there is no pixel information available, the solution space will be at its maximum?
However, our formulation states that any pixel not seen by a pixel is an inside
pixel, and if there is no pixel information available, then the only possible solution
is that where all the voxels are inside voxels. This fits in well with the goal of 3D
reconstruction. When reconstructing the shape of an object, the colour of the voxels
not seen by the camera are inconsequential, and therefore these voxels should not
add to the size of the solution space.

Looking at the results given in Figure 11, it can be seen how each new pixel
affects the solution space. After the first image is processed (the first image con-
tains little meaningful 3D information on its own), subsequent pixels added tend to
further constrain the solution space. This trend breaks down when there is little or
no colour variation in the input images. The plot in Figure 12 shows what happens
in this situation. All the surface voxels in Rect16 have the same colour, so instead
of the solution space being mostly constrained with the addition of new pixels, the
size of the solution space grows exponentially with each new pixel.

The results for the differing voxel configurations show the effect of a few differing
sources of ambiguity (Figure 11). Bland regions are generally considered as the
biggest obstacle in reconstructing a scene and this is reflected in the fact that both
the Rect Bland and Shape Bland voxel configurations gave the largest solution
spaces. The Rect Repeat and Shape Repeat plots clearly show the ambiguity caused
by repeating texture. Even though these voxel configurations contain more unique
colours than Rect2 and Shape2 respectively, they produce larger solution spaces.
Finally, it is worth noting that the plots produced by Rect1 and Shape1 show the
smallest solution spaces that you can expect from these shapes using the current
image configuration, since every surface voxel in these two voxel configurations has
its own unique colour.

These results show how large the solution space can be even for very small voxel
spaces. Obviously, solving the 3D reconstruction problem using no constraints will
almost never give a solution space small enough so that the scene geometry can be
extracted with any degree of accuracy.

7. Conclusions

Without any knowledge of the 3D space with which to apply constraints, it is
impossible to guarantee a unique solution to the 3D reconstruction problem, no
matter how many images are taken of the scene, they’re orientation or even how
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Fig. 11. Results of solving the logical formulation for Rect and Shape
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Fig. 12. Results of solving the logical formulation for Rect16

much colour variation is in the scene itself.
The formulation presented in this paper allows the calculation of the entire

solution space, without any constraints to artificially limit this space. The results
from reconstructing even small voxel spaces (5x5 voxels) show that the solution
space is huge, with the number of solutions ranging from 10 to 107. These results also
clearly show the ambiguities caused by both bland regions and repeated textures.

Given these results, it is easy to see why constraints are needed in order to
reduce the solution space to a more reasonable size. The next step is to implement
additional constraints on top of the base formulation. Because of the general nature
of the formulation, this can be easily done, since any constraint simply removes
those solutions that do not conform from the solution space.

The formulation can also be used to provide a quantitative measure of the effec-
tiveness of any constraint. Because of the formulation’s discrete nature, the exact
size of the solution space can be easily found by counting the number of possible
solutions. Since the purpose of a constraint is to reduce the solution space as much
as possible, this size could be used as a quantitative measure of the effectiveness
of any constraint. This can be further investigated when additional constraints are
implemented and tested.
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