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Abstract

In this study, we investigate the timing aspects of the Afro-Brazilian samba mu-
sic. Instead of looking exclusively at the temporal aspects of musical events, we
focus on the interaction between microtiming patterns and several musical proper-
ties: intensity, meter and spectral characteristics. Our study is based on computa-
tional analyses applied to a data-set of 106 musical audio excerpts. The data-set is
processed through an auditory model and then segmented with respect to several
spectral regions and metric levels. In the sequence, the resulting segments are de-
scribed in terms of their musical properties, over which patterns of peak positions
and their intensities are sought. A clustering algorithm is used to systematize the
process of pattern detection.

Among our results, we confirm a phenomenon previously reported in the litera-
ture: the anticipations of the third and fourth semiquavers in a beat with respect
to their quantized positions. We also argue that these patterns of microtiming de-
viations interact with different profiles of intensities that change according to the
metrical structure and spectral characteristics. In particular, we suggest two new
findings: (i) a small delay of microtiming positions in the lower end of the spectrum
on the first semiquaver of each beat and (ii) systematic forms of accelerando and
ritardando at a microtiming level covering 2-beats and 4-beats phrases. The results
demonstrate that some characteristics of musical cultures such as the samba are
beyond traditional representations of rhythm. It also demonstrates the importance
of multidimensionality interactions with timing aspects of music, which might be
only verifiable through computational approaches. More research is needed in order
to find proper representations for rhythm and microtiming aspects in such contexts.

1 Introduction

The idea that some properties are invariant in a group of music examples is a primary
assumption in the analysis of music styles (de Carvalho, 2000, p. 134). When it comes to



analysis of samba music, and in general music from the African diasporas, the majority
of approaches concentrate on invariant properties of rhythm. However, rhythm involves a
number of different aspects. It is claimed that rhythm conveys a combination of temporal
structure, beat induction and timing (Honingj, 2001)), which interacts with a number of
aspects encoded in sound, such as metric structures and dynamics (e.g., London, |2004;
Palmer, |1997; Sethares|, 2007)), as well as aspects not encoded in sound such as motor-
schemes (Todd, [1995; Palmer, |1997)), kinematic models (e.g.,[Honing}, 2003} Grachten and
Widmer, 2009; Palmer} {1997; |Todd, [1995) and other modalities such as dance (Naveda
and Leman), 2009} Chernoff, 1991)). How do the actual representations of samba style deal
with such multi-dimensionality of rhythm? How could computer music help to detect
meaningful invariants in this context?

The majority of analytical studies of samba is based on or modeled through sym-
bolic representations (e.g., musical scores) that are designed to represent the perception
of macro-structural characteristics of rhythms (i.e. happening at lower levels of the mu-
sical meter, London, |2004) such as the relative durations of musical events, bar, beat
and phrases. For example, it has been claimed that samba music is characterized by
a binary metric structure (binary bar) “muted” in the first beat and accentuated on
the second beat (Chasteen, 1996} Galinsky, 1996; [Moural 2004). Other sources indi-
cate that samba also exhibits a “polymetric rhythmic texture” or a musical texture in
which different metric layers having different periodic lengths and metric phases coexist
(Browning}, |1995; |[Fryer], 2000). Great part of the literature refers to the general concept
of syncopation or the figure of syncope (e.g., Sandroni, 1996; Sodré, 1979) as the main
characteristic of samba. In particular, many authors have proposed rhythms figures that
characterize rhythms or represent models for renditions of rhythms in samba. Examples
of these propositions include the “tresillo” (Sandroni, 2001)), the “characteristic syncope”
(Andrade, 1991)), the “tamborim cycle” (Araujo, 1992, quoted in |[Sandroni, |2001), the
“samba rhythm necklace” (Toussaint} 2005), or the “Angola/Zaire Sixteen-pulse Stan-
dard Pattern” (Galinskyl, [1996; [Kubik} 1979).

In contrast with symbolic models, a number of studies highlight the fact that musi-
cal experience in samba is transmitted by means of subjective texts (texts, reports and
interpretations from subjects) and informal contexts, based on oral traditions and so-
cial participation, rather than through more explicit knowledge or written documents
(de Carvalhol 2000; |[Sandronil 2001} [Sodrél [1979). The strong link of samba with Afro-
Brazilian religious rituals (de Carvalho, 2000) and social displays such as the roda-de-
samba (Moural, 2004)) indicates that samba cannot be easily detached from experience
of dance, rituals, texts and from the experience in the social context as a whole. In this
context, the action-perception loops experienced in the timing of activities such as dance
(e.g., Sodré, 1979; Browning, (1995)), manual labor (e.g., [Fryer] |2000) or hand clapping
have an active role in the ellaboration of music performances. From this socio-historical
perspective, rhythm should be understood as a concept formed by a (1) number of
modalities of dimensions of experience, hence hardly explainable as a composition of in-
dependent elements, and (2) as an experience that is strongly rooted on the perception
of timing and action in time.



A small part of the literature deals with micro-time structures of rhythm. Some
references are also made to the relevance of observing rhythmic phenomena occurring
at the fastest level of the musical meter. This metric level is referred in the literature
in a variety of forms: “tatum layer” (Bilmes| 1993)), “valeurs opérationelles minimales”
(Arom, (1989), “pulsation” (Polakl |1998]) or “common fast beat” (Kauffman, 1980). A
number of studies focus on small idiomatic deviations applied to the tatum level between
instants where notes are actually played and their corresponding quantized positions.
These deviations are referred to microtiming, here defined as a series of event shifts at
a constant tempo (Desain and Honing}, [1993; Bilmes, [1993)).

Microtiming characteristics, and interactions with other musical features as pitch,
phrasing or intensity, have also been observed in other music styles such as Jazz (Friberg
and Sundstrom, 2002; Benadon, 2003}, [2006}, [2009), Norwegian traditional fiddle mu-
sic (Johansson, 2005), Irish traditional fiddle music (Rosinach and Traube, 2006), or
Viennese Waltz (where the second beat in a group of three is early and emphasized,
Desain and Honing, 1989; |Gabrielsson, (1985). Some links are also starting to be done
between the presence of microtiming characteristics in music and groove perception or
movement induction (Madison) 2006; [McGuiness, 2006)).

Few studies also exist on aspects of microtiming in samba music. |Lindsay and
Nordquist| (2007)) analyzed microtiming in recordings of samba instruments (pandeiro,
surdo and agogd) using an improved spectrogram analysis based on [Fulop and Fitz (2006)
as basic signal representation combined with a manual annotation of events. They found
systematic anticipations of the third and fourth semiquavers (within 1 beat) for the pan-
deiro recordings inside pairs of “short-long” onsets. They also found 4-beat patterns of
onsets in progressive acceleration. [Naveda et al.| (2009) studied spontaneous vocalization
of samba rhythms using a peak detection algorithm applied to auditory images (based
on the auditory features proposed in [Van Immerseel and Martens, [1992) and also found
indications of systematic anticipations of the third and fourth semiquavers. Also using
standard spectrogram analyses combined with manual annotation, Lucas| (2002) found
similar microtiming deviations in recordings collected in Minas Gerais state (Brazil)
pertaining to the traditions of Congado Mineiro. Although the Congado traditions are
accompanied by musical forms stylistically distinct from samba music, both Congado and
samba share the same Afro-Brazilian roots. Gerischer| (2006) collected several reports
from musicians in the context of samba performed in Bahia (another Brazilian state).
She realized a systematic analysis of microtiming based on field recordings and manual
annotation. |Gouyon| (2007)) analyzed commercial recordings os samba. He identified
patterns of microtiming deviations by means of machine learning techniques applied to
the “complex spectral difference”, which was suggested in (Bello et al. |2004) as onset
detection function. Results also indicated the existence of systematic anticipations of the
third and fourth semiquavers. This overview accounts for evidences of systematic devia-
tions that seem to occur on the third and fourth semiquavers in the beat level in samba
music. However, most studies are based on small number of samples and most analyses
rely on manual annotation of events or windowed FFT methods, whose temporal pre-
cision does not permit reliable analysis, specially in low-frequency components. Most
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Figure 1: Example of loudness curves generated by auditory model. The 44 envelope
curves represent a simulation of loudness on each auditory channel (for more details, see
Van Immerseel and Martens|, [1992).

importantly, most of these studies consider only (micro) temporal deviations and do not
consider potential interactions with other musical features such as intensity, timbre, or
meter.

We aim at studying, from a systematic point of view, and with a significant number of
musical audio excerpts, microtiming characteristics of samba music and their interactions
with different musical properties, namely intensity, meter and (estimations of) timbre.

The methodology is explained in Section [2] where we provide details on the data-set,
on the extraction of low-level features from audio (accounting for an auditory model
and segmentation of spectral regions and metric levels), on the method for computation
of microtiming features, and finally on the method used for clustering the obtained
information. Results are provided in Section |3 which examines the tendencies observed
in the clustering groups. Finally, in Section 4| we discuss the results and possible impact
in our hypotheses and Section [5| summarizes the contributions and implications of this
study.

2 Method

2.1 Data-set

Our data-set consists in 106 excerpts of music collected from commercial CDs. The
median of durations is 33 s. The range of genres includes music styles influenced by Rio
de Janeiro’s samba, such as samba carioca, samba-enredo, partido-alto and samba-de-
roda (from Bahia). The excerpts were stored in mono audio files with a sample rate of
44100 Hz, 16 bits and normalized by amplitude.
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Figure 2: Two processes of segmentation of the auditory curves: metric levels and
spectrum. The segmentation results in a collection of N instances for each metric level,
divided by the spectrum region. The 3 spectral regions are also represented at this phase.

2.2 Extraction of low level features

2.2.1 Auditory model

We used an implementation of the auditory model described in [Van Immerseel and)|
(.dlib library for Mac OSX). This auditory model simulates the outer
and middle ear filtering and the auditory decomposition in the periphery of the audi-
tory system. The results take a form of loudness curves representing the loudness on
the auditory bands of the audible spectrum (for more details see [Van Immerseel and
, p. 3514). The configuration used in this study provides 44 channels
of loudness curves with sample frequency at 200 Hz, distributed over 22 critical bands
(center frequencies from 70 Hz to 10.843 Hz). Figure [1| displays an auditory image (or
loudness curves) generated from the auditory model of an example excerpt.

2.2.2 Segmentation

The segmentation of auditory curves involved two parts: (1) the process of segmenta-
tion of the spectrum range in the frequency domain, which averages auditory curves
in 3 spectrum regions (low-, mid- and high-frequency spectrum) and (2) the process of
segmentation of 3 metric levels in the temporal domain, which segments the features in
segments with lengths 1, 2 and 4 beats. The processes of spectral and metric segmenta-
tion are illustrated in Figure

Segmentation in spectral regions The data-set consists in excerpts of comercial
polyphonic music which makes the separated instrumental sources unavailable. Current
state-of-the-art source separation techniques are prone to bias and generation of artifacts
that could disturb the detection of microtiming positions. However, current knowledge
about indicates that percussion instruments of the samba ensamble have defined musical



functions and roughly defined spectrum signatures across the musical tessitura, as ex-
emplified in Figure [3] . The musical function of each instrument is related to its timbre,
which can be roughly represented by low-level descriptors in the frequency domain or,
in our case, by loudness in time distributed in auditory channels.

In Figure [3| for example, the spectrum of the low-frequency samba drum, the surdo,
is mostly concentrated in the lower part of the audible spectrum. Tamborims, repiniques,
vocal parts and other instruments occupy the mid frequency region of the auditory spec-
trum. The spectrum signature of Ganzds and different kinds of shakers are concentrated
in higher portions of the spectrum. Although the frequency components of these instru-
ments overlap each other in the time and in the frequency domains (particularly during
transients in the attacks points), the spectrum signature of each timbre is relatively dis-
criminated from each other. Therefore, for each excerpt, we averaged the 44 loudness
curves provided by the auditory model in 3 loudness curves that reflect estimated distri-
butions of tessitura: low-frequency region (channels 1:6), mid-frequency region (channels
7:30) and high-frequency region (channels 31:44). For a similar procedure, see (Lindsay
and Nordquist, [2007)).

Auditory images of typical samba instruments
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Figure 3: Response of the auditory model for attacks (80 samples = 0.4 s) of the instru-
ments surdo, repinique, tamborim and shaker (from left to right). The graphs demon-
strate how different instruments of a traditional samba ensemble have different responses
or spectrum signatures.

Segmentation of metric levels Current knowledge about samba also indicates that
it has a well-defined, salient beat level (referred elsewhere as quarter-note), a binary bar
structure (2 beats) and a fast metric level that divides the beat in four semiquavers (also
referred as tatum level).

In order to identify the time points of the metrical accents, we performed the anno-
tation of beat (1 beat) and bar (2 beats) levels for the entire dataset. Automatic beat
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Figure 4: Histogram of BPM values of the beats for the whole data-set (106 excerpts,
5064 beats).

annotation using software such as BeatRoot (Dixonl 2007) and QMUL beat tracking
plugins for Sonic Visualiser (Cannam et al., 2006]) resulted in erractic beat tracking for
this dataset. Therefore, we manually annotated the first and second quarter-note beats
of each bar in the dataset (annotations were realized by three Brazilian musicians using
the software Sonic Visualiser). This process results in a total of 5064 quarter-note beats
in our data-set. Figure [4] shows the distributions of the BPM values for the data-set.
Normality observed in the histogram shows a tendency of tempi towards 103 BPM (mean
= 103.02, standard deviation = 18.42).

These annotations are used to define three different types of segments containing
respectively 1, 2 and 4 beats (hence corresponding to three metric levels). Each will be
subjected to a separate cluster analysis.

2.3 Computing microtiming features

For each musical excerpt, the previous segmentation steps yield a number of segments,
corresponding to three different metric levels, and three spectral regions. Each of these
segments is then subjected to an analysis of its microtiming deviations with respect to
the mathematical semiquavers subdivision and is parameterized in order to compute
microtiming features. This parameterization is described in Table [1, while Figure
provides an illustration of this process.

One should notice that the average between the position of the peaks of the three
spectral regions in Phase 5 is of utmost importance. Manual beat annotation does not
provide a precise beat segmentation (due to bias of the manual process) and differences
of attacks between spectral regions do not offer common point for segmentation (due
to discrepancies between attacks of instruments). Therefore, we opted to rely on the
average position of the three spectral regions of the first semiquaver, which permits the



For each excerpt, for each metric level (i.e. 1-beat, 2-beat, or 4-beat) do:
Phase 1 Retrieve beat position and Inter-Beat Interval (IBI).

Phase 2 Retrieve strict semiquavers positions by generating a mathematical divi-
sion of the beat (four steps of i of the IBI).

Phase 3 Look for peaks in the proximity of first beat manual annotation, in each
spectral region.

Phase 4 In each spectral region, select highest peak situated above threshold
around first beat (if there are no peaks above threshold, retrieve NaN).

Phase 5 Compute average peak position of the 3 spectral regions.

Phase 6 Retrieve position and amplitude of the highest peak in close proximity of
each semiquaver, in each spectral region.

Table 1: Pseudo-algorithm for the computation of microtiming features.

calculation of beat period and microtiming relative to this point. This does not affect the
results because we rely on relative positions in relation to the IBI rather than absolute
positions in seconds.

Finally, for a given metric level, we computed the following microtiming features for
each semiquaver: (1) the position of the peaks with respect to the first beat in each
spectral region (henceforth noted p) and (2) the intensity of the peaks (noted 7). For n
semiquaver in a given metric level, the instances will contain p; ..., peak positions and
i1,....,n peak intensities, in each spectral region 7y ... 3. Table |2 specifies the structure of
the instances further analysed in the next Section. Note that instances that feed the
clustering algorithm combine information of spectrum, timing and intensities, and are
clustered for three different metric levels or segments. The process of clustering applied
to each metric level will lead to three different groups of results, displayed in Sections|3.2
and (metric levels 1- 2- and 4-beat, respectively). It is expected that different
lengths of instances, or metric levels, will provide different configurations of clusters and
reveal different patterns of interaction.

2.4 Clustering

In order to find common patterns between these instances, we carried out a k-means
clustering based on an improved extension of the basic k-means algorithm, developed
by [Pelleg and Moore| (2000) and implemented in Weka platform (Witten and Frank|
Witten and Frank). This method searches for locations and numbers of clusters that
efficiently improve the Bayesian Information Criterion (BIC) or the Akaike Information
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Figure 5: Description of the heuristic of calculation of microtiming deviations. Example
of 1-beat metric level, and single spectral region only represented. See Table [If for the
explanation of each step of the algorithm.

Metric level 1-beat: [p1.4,%1...4]r .. 5

e 12 positions + 12 intensities =24 elements

Metric level 2-beat: [p;....8,%1,...8)r .

s A.’3
e 24 positions + 24 intensities =48 elements

Metric level 4-beat: [p1 .. 16,71, 16]r.... 5

e 48 positions + 48 intensities =96 elements

Table 2: Description of the instances used in the the k-means process

Criterion (AIC) measure. The algorithm was configured to retrieve a minimum of 3 and
a maximum of 5 clusters (arbitrary).
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Figure 6: Distributions of the peak positions for metric level 1-beat, for all excerpts
(N=5064, 106 excerpts). The shades of gray indicate the contribution of each cluster to
the total distribution. The vertical grid indicates the mathematical subdivisions of the

beat (0, 1, 2 and 2 of the beat).

3 Results

We first provide results regarding average microtiming distributions in metric level 1-beat
(Figure @, while following sections examine the internal structure of these microtiming
distributions by means of clustering analysis.

3.1 Microtiming distributions in metric level 1-beat

The results displayed in Figure[f]show an overview of the main microtiming tendencies for
metric level 1-beat. We examined the deviations of all microtiming positions (4 positions
X 3 spectrum regions) from the mathematical divisions of the beat using ANOVA.

The main observations derived from pair wise comparisons indicate that third and
fourth semiquavers are significantly anticipated with respect to mathematical divisions
of the beat (F'(10,5064) = 422.39,p = 0). This confirms results from previous studies
(Naveda and Leman, [2009; Lindsay and Nordquist, 2007; |Gouyon, 2007). Mean values
for these anticipations are —0.026, —0.031 and —0.032 beats for the third semiquavers,
in low-, mid- and high-spectrum regions respectively (i.e. 16, 18 and 19 ms in the case
of excerpts with average tempo of 103 BPM), and —0.028, —0.018 and —0.027 beats for
the fourth semiquavers, in low-, mid- and high-spectrum regions respectively (16, 11 and
16 ms for average BPM).

In addition, the first semiquaver in the low-spectrum region is delayed from its math-
ematical position. We have found a mean deviation of +0.012 beats, which represents

10
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Figure 7: Cluster centroids c1, ¢2 and c3 for 5064 instances of metric level 1-beat. Ticks
represent 0.05 beats. Vertical traced lines indicate mathematical divisions of the beat.

7.3 ms when reported to the average BPM.

3.2 Clusters in metric level 1-beat

The cluster analysis of the 1-beat level resulted in three clusters for each spectrum re-
gion, displayed in Figure [7| (note that different clusters are represented by different stem
markers, connected by traced lines, which facilitates the visualisation of the intensity
profiles of the clusters). The representation of the cluster centroids confirms the obser-
vation made above: third and fourth semiquavers are anticipated in all three spectrum
regions and in all three clusters, and the first semiquaver of the low-spectrum is slightly
delayed.

In addition, analysis of intensities shows new information. Pair wise comparison
after ANOVA (mean cluster intensities x 3 spectrum regions) shows that the second
semiquaver is significantly accentuated in the mid- and high-spectrum in all clusters
(F(2,3821) = 675.7201,p < 0). In the high-spectrum, the clusters show flat intensities
in the second half of the beat. Cluster c3 is generally less intense than the other clusters
while cluster c1 is more intense. Cluster ¢2 seem to display a mixture of clusters c1 and
c3: first peaks have the same properties of cluster c3 while the other peaks exhibit the
same characteristics of cluster cl.

3.3 Clusters in metric level 2-beat

The cluster analysis of the metric level 2-beat resulted in five clusters. Figure [8a] shows
clusters cl, c2 and cb for metric level 2-beat. The results exhibit the same systematic
anticipations of third and fourth semiquavers, in every beat (or third, fourth, seventh
and eight semiquavers, in a two-beat sequence). There is also a delay of the first (and

11
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Figure 8: Cluster centroids cl, ¢2, ¢3, ¢4 and ¢5 for 2518 instances of metric level 2-beat.
Ticks represent 0.05 beats. Vertical traced lines indicate mathematical divisions of the
beat.

fourth) semiquaver in the low-frequency region, as seen in the metric level 1-beat. This
observation seems to affect both quarter-note beats at the bar level although differ-
ently: ANOVA shows that first semiquavers of the first and second quarter-note beats
in the low-spectrum region are significantly delayed from their mathematical positions
(F(1,802) = 15.2181,p < 0.0001), by +0.0087 beats and +0.018 beats, respectively (re-
call that the deviation was 4+0.012 beat, close to the average of these two values, when
focusing on the 1-beat level). The first semiquaver of the second beat is significantly
more delayed than that of the first quarter-note beat. The former also shows an accen-
tuation in intensity with respect to the latter, confirming the tendency to accentuation
of the second beat, reported in the literature (Sandroni, 2001 [Moural [2004; Chasteen,
1996|).

Peak intensities reveal more variability at this metric level. While the intensity peak
of the second semiquaver (first beat) seems to be accentuated only in the mid-frequency
region, the fourth semiquaver is accentuated in cluster centroids c2 and ¢5. In the second
beat, peak intensities of the second to the fourth semiquavers are flattened. Cluster cl
has an overall low intensity and flat profile compared with the other clusters.

Figure [8b| shows the results of the clusters c¢3 and c4. These results differ from those
of clusters cl, c2 and c5 by the profile of increasing deviations accumulating in time.
Cluster c¢3 shows an increasing anticipation in all regions and peaks. The anticipation
increases until the last semiquaver of the second beat, which ends with almost 0.1 beat
of anticipation from the mathematical position of the fourth semiquaver of the second
beat. Cluster c4 shows the opposite pattern: an increasing delay from the first to the
last semiquaver. The intensity patterns seem to be similar to the observed intensities in
clusters c1, ¢2 and c5.
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Figure 9: (a) Clusters cl, ¢2 and c¢3 (out of 5 clusters) calculated for 1259 instances
of metric level 4-beat. (b) Clusters ¢4 and c¢5 (out of 5 clusters) calculated for 1259
instances of metric level 4-beat. Ticks represent 0.05 beats. Vertical traced lines indicate
mathematical divisions of the beat.

3.4 Clusters in metric level 4-beat

The clustering for the metric level 4-beat resulted in a solution of 5 clusters. Figure
shows the centroids of clusters cl1, ¢2 and ¢3. Figure [9b] shows the results for clusters c4
and ¢5. The metric level 4-beat includes all the main characteristics observed in metric
levels 1- and 2-beat, with special attention to the deviations of peak positions. The
profile of peak intensities seems to be quite similar for all clusters, including clusters
¢4 and c5. Clusters cl, ¢2 and ¢3 seem be discriminated by means of profiles of peak
intensity. Cluster c¢2 seem to be more attenuated while cluster cl1 and c¢3 display higher
loudness curves.

Clusters ¢4 and cb display the same pattern observed in the metric level 2-beat
(Figure . Results for cluster ¢4 indicates that 27% of the instances are grouped in
a continuous acceleration profile that reaches up to —0.12 beats of anticipation in the
last semiquaver in the high-spectrum region (F'(2,597) = 2.8646,p < 0.057). Although
the deceleration pattern of cluster ¢5 represent only 19% of the instances the last peak
position in this cluster reaches up to —0.18 beats in the last semiquaver (105 ms for the
average tempo of 103 BPM).

Mean deviations (over 3 spectral regions) from mathematical positions for clusters c4
and cb are displayed in Figure The data shows a significant tendency of accelerations
and decelerations but also an increasing level of variance. The microtiming positions that
correspond to quarter-note beats (i.e. positions 1, 5, 9 and 13 on Figures and
show less tendencies of deviations, which may be attributed to a tendency to “keep
track” of the quarter-note beat while applying accelerations and decelerations.
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Figure 10: Mean deviations from the mathematical subdivisions for clusters c4 and c5.

4 Discussion

In this study we analyzed the interaction between microtiming, meter, intensity and
spectral estimations of timbre.

The results confirmed the tendency of anticipations of the third and fourth semi-
quavers at all metric levels (all quarter-notes) and spectral regions. This objectively
confirms the existence of a systematic artifact described in previous studies about mi-
crotiming in samba music and other Afro-Brazilian musical traditions (Gerischer, 2006}
Lindsay and Nordquist, 2007; Lucas|, 2002; Gouyonl, 2007)).

We also provided indications of the existence of rhythmic devices that may charac-
terize samba music which, to the best of our knowledge, have not been reported to date:
(1) a small delay of instruments in the lower end of the spectrum on the first semiqua-
ver of each beat, particularly on the second beat in a bar, and (2) systematic forms of
accelerando and ritardando at a microtiming level.

These results raise several interesting hypotheses. The anticipation of the third and
fourth semiquavers and the delay of the first semiquavers show a tendency of approxima-
tion of semiquaver rhythms towards triplet rhythmic figures. The coexistence of triplet
rhythms with binary divisions are reported on several references on samba music (Daniel,
2006; Browning, 1995; [Santos Neto|, 2010; Kubik, |1990) and other musical cultures of
the African diaspora (e.g., Schwartz and Fouts|, [2003; Temperley, 2000)). The effect of
the coexistence of binary and ternary divisions could be a strategy to induce tension,
ambiguity and flexibility in the rhythmic texture. Tension, for example, could be a way
of bringing attention to specific performances and personal styles (see, for example, the
concept of participatory discrepancies in [Keil, [1987,|1995) or a mechanism of making the
musical texture more interesting by creating a dialog between expected and unexpected
rhythms. Ambiguity could reinforce the polymetric and polyrhythmic characteristics of
samba music, which may act as an inductor of body movements (Browning, |1995; Sodré,
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1979) or as an impulse to use dance gestures as a form of metrical disambiguation (see
Naveda and Leman, [2009; Naveda, [2011)). The temporal flexibility provoked by micro-
timing deviations could provide a temporal grid that is flexible enough to accommodate
(and invite) participation of newcomers in the social displays of Afro-Brazilian practices
but sufficiently challenging and idiosyncraticﬂ to be recognized and performed in high-
level performance renditions (see [Vassberg, [1976; |Chernoff, |1979, for a discussion about
participation in African and Afro-Brazilian musical contexts) .

While it is well known that commetric beat patterns in samba are performed by
percussion instruments such as surdo or tantd and accentuated in the second beat (San-
droni, [2001; Moura, [2004; (Chasteen, 1996)), (which is also reflected in our results), we
were unable to find references to any systematic delay of such percussion instruments on
the first semiquaver. Neither could we find references to the observation that, in a bar,
the first semiquaver of the second quarter-note beat is significantly more delayed than
that of the first quarter-note beat.

This hypothetical observation should be interpreted with caution however. The
temporal range of delays in the low-frequency spectrum is very close to the sampling
period of the auditory model (5 ms), which means that minimum significant delays
found in the Figure , for example, account for only 2-samples (10 ms) between the
mathematical and actual peak positions. We focus on relative position, hence would
argue that our observation does hold, however, more research would be welcome to
support this observation.

With regards to accelerando and ritardando, we should consider that the computa-
tion of clusters may have merged two recurrent tendencies of outliers in the data-set.
Nevertheless, the percentage of the instances represented by these clusters (¢3-15% and
c4-11%), similar cluster structures found in other metric levels above 2-beat (4-beat
level), and the significance of these distributions (see Figure , seem to indicate that
they reflect real microtiming structures present in our data. If this hypothesis were
to be confirmed, this could indicate that samba exhibits rhythmic devices similar to
accelerando and ritardando forms, at microtiming level. Although these rhythmic ar-
tifacts are widely used to delimit phrases, endings and formal articulations in classical
music (macro-time level), it is surprising that such devices would appear at the level of
microtiming.

The variation of intensities demonstrate that microtiming in samba is subjected to
interactions with accents and metrical structure. The flatness of semiquaver intensities
observed in clusters in all metric levels, especially the 2-beat level, indicate the existence
of artifacts that evidence the binary meter in the intensity profiles. While the first
beat starts with a low-energy semiquaver in the low-frequency region and accents in the
second (Figure @ and fourth semiquavers (Figure , the second beat starts with a
characteristic strong bass accent, followed by flat and low intensity semiquavers. This

1For example, acculturated performers woud be recognized by their ability to perform systematic
deviations (and interactions). This ability may be linked with subjective qualities attributed to skilled
musicians or performances such as the “balanco” (balance), ginga (close to groove and related to body
movements) or “suingue” (swing). See |Gerischer| (2006]) for other examples.
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oscillation of the interactions between beat positions may play an important role in the
induction of metric properties.

The use of a psychoacoustically based feature as the main descriptor of the audio do-
main suggests that these observations may be available as proximal cues in the periphery
of the auditory system. Moreover, the results show that microtiming can be understood
as a temporal frame where a dynamic network of relationships among musical cues takes
place in the performance of samba music. At the same time, microtiming creates tension
by disrupting the flow of the tatum level it also keeps the metric structure organized via
the interactions with patterns of intensity.

5 Conclusion

There are several indications that the perception and performance of timing are involves
more information than what is encoded in the temporal structure of musical events. In
this study, we used a systematic and explorative approach to reveal some aspects of
this intricate node where time, accent, timbre and metrical properties converge. The
application of computational approaches to our data-set of commercial samba music
confirmed several characteristic microtiming deviations suggested in the literature and
revealed other important interactions that enrich the knowledge about timing in samba
and the knowledge about timing in the performance of music. The indications of the
existence of other characteristics such as the delay of the first semiquaver (low spectrum)
and the accelerando and rallentando microtiming patterns inaugurate new viewpoints
on timing aspects that populate the tacit knowledge behind the performance of popular
music styles. The multidimensional aspects of the knowledge that moves cultural forms
such as the samba may reserve much more factors not easily depicted in traditional
approaches to music (e.g., scores).

Note, however, that the present study does not claim an exhaustive overview of
multidimensionality of microtiming structures in samba. Furher, the interactions in
the context of samba should not be restricted only to musical dimensions encoded in
sound. Samba is more than a musical style. It is a complex cultural environment,
which inherits the relevance of experiencing timing from the “multiple experience flows”
(Stone, [1985), present in the Afro-Brazilian religious rituals that form the background
of samba culture (de Carvalho, 2000; [Sandroni, 2001} Sodré, 1979)). There, not only
music and dance are involved, but also imagery, tradition, symbologies and other inter-
textual components (Gerischer, 2006, p. 115). A typical description of an Afro-Brazilian
Candomblé ceremony illustrates how this “original” experience of timing unfolds in the
Afro-Brazilian music and ritual, which convey complexities that are far beyond timing
and rhythm:

“The dancers dance with great violence, energy, and concentration. Getting
really involved in the rhythm and movement (...) The drummers (...) can
play certain signals in the rhythmic pattern to cause the dancing to take a
violent turn (...) Omne method is for one drum to syncopate the rhythm
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slightly (another one maintaining it) such that a strong beat falls just before
the main beat. (...) This gives a impression of increased speed when this
is not really the case, and creates tension and feeling of imbalance in the
listener or dancer” (Walker} 1973, quote in [Fryer} 2000))

This example demonstrates how elaborated maps of timing and accents take part
in an intricate system of metrical and rhythmic textures and forms of tension that tie
together sound and movement. Samba music derives from this original combination of
music and movement. How can computational musicology reach and reveal the elements
behind these phenomena? How representations of meter and rhythm can adapted to
new viewpoints provided by computational approaches to music, movement and image?

More research is needed to elucidate the interplay between descriptive characteristics
of samba (e.g. microtiming characteristics in music, in dance) on the one hand, and the
production of physical behavior (e.g. dancing, playing) on the other hand. More research
is needed to provide reliable onset functions in polyphonic and better methods for the
study of microtiming in non-Western music contexts. More studies should focus on the
perceptual salience of microtiming structures and its relations to qualitative categories
of music.
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