334 research outputs found
Complex effects of helper relatedness on female extrapair reproduction in a cooperative breeder
In cooperatively breeding species, the presence of male helpers in a group often reduces the breeding femaleâs fidelity to her social partner, possibly because there is more than one potential sire in the group. Using a long-term study of cooperatively breeding superb fairy-wrens (Malurus cyaneus) and records of paternity in 1936 broods, we show that the effect of helpers on rates of extrapair paternity varied according to the helpersâ relatedness to the breeding female. The presence of unrelated male helpers in a group increased average rates of extrapair paternity, from 57% for groups with no unrelated helpers, to 74% with one unrelated helper, to 86% with 2+ unrelated helpers. However, this increase was due in equal part to helpers within the group and males in other groups achieving increased paternity. In contrast, helpers who were sons of the breeding female did not gain paternity, nor did they affect the level of extra-group paternity (which occurred at rates of 60%, 58%, 61% in the presence of 0, 1, 2+ helper sons, respectively). There was no evidence of effects of helpersâ relatedness to the female on nest productivity or nestling performance. Because the presence of helpers per se did not elevate extrapair reproduction rates, our results undermine the âconstrained female hypothesisâ explanation for an increase in extrapair paternity with helper number in cooperative breeders. However, they indicate that dominant males are disadvantaged by breeding in âcooperativeâ groups. The reasons why the presence of unrelated helpers, but not of helper-sons, results in higher rates of extra-group reproduction are not clear.G.K.H. was supported by the U.K. Natural Environment Research Council (Grant NE/L002558/1) through the University of Edinburghâs E3 Doctoral Training Partnership. The long-term research has been facilitated b
The âalgebra of evolutionâ: the RobertsonâPrice identity and viability selection for body mass in a wild bird population
By the RobertsonâPrice identity, the change in a quantitative trait owing to
selection, is equal to the traitâs covariance with relative fitness. In this study,
we applied the identity to long-term data on superb fairy-wrens Malurus cyaneus, to estimate phenotypic and genetic change owing to juvenile viability
selection. Mortality in the four-week period between fledging and independence was 40%, and heavier nestlings were more likely to survive, but why?
There was additive genetic variance for both nestling mass and survival, and
a positive phenotypic covariance between the traits, but no evidence of additive genetic covariance. Comparing standardized gradients, the phenotypic
selection gradient was positive, βP = 0.108 (0.036, 0.187 95% CI), whereas the
genetic gradient was not different from zero, βA = â0.025 (â0.19, 0.107 95%
CI). This suggests that factors other than nestling mass were the cause of variation in survival. In particular, there were temporal correlations between mass
and survival both within and between years. We suggest that use of the Price
equation to describe cross-generational change in the wild may be challenging,
but a more modest aim of estimating its first term, the RobertsonâPrice identity,
to assess within-generation change can provide valuable insights into the
processes shaping phenotypic diversity in natural populations.
This article is part of the theme issue âFifty years of the Price equationâG.K.H. was supported by the U.K. Natural Environment
Research Council (grant no. NE/L002558/1) through the University
of Edinburghâs E3 Doctoral Training Partnership, and L.E.B.K. was
funded by an ARC Future Fellowship FT110100453. The long-term
superb fairy-wren study research has been facilitated by a series of
Discovery Project grants from the Australian Research Council to
A.C. and L.E.B.K., most recently DP150100298
Estimating the functional form for the density dependence from life history data
Two contrasting approaches to the analysis of population dynamics are currently popular: demographic approaches where the associations between demographic rates and statistics summarizing the population dynamics are identified; and time series approaches where the associations between population dynamics, population density, and environmental covariates are investigated. In this paper, we develop an approach to combine these methods and apply it to detailed data from Soay sheep (Ovis aries). We examine how density dependence and climate contribute to fluctuations in population size via age- and sex-specific demographic rates, and how fluctuations in demographic structure influence population dynamics. Density dependence contributes most, followed by climatic variation, age structure fluctuations and interactions between density and climate. We then simplify the density-dependent, stochastic, age-structured demographic model and derive a new phenomenological time series which captures the dynamics better than previously selected functions. The simple method we develop has potential to provide substantial insight into the relative contributions of population and individual-level processes to the dynamics of populations in stochastic environments
What, if anything, are hybrids: enduring truths and challenges associated with population structure and gene flow
Hybridization is a potent evolutionary process that can affect the origin, maintenance, and loss of biodiversity. Because of its ecological and evolutionary consequences, an understanding of hybridization is important for basic and applied sciences, including conservation biology and agriculture. Herein, we review and discuss ideas that are relevant to the recognition of hybrids and hybridization. We supplement this discussion with simulations. The ideas we present have a long history, particularly in botany, and clarifying them should have practical consequences for managing hybridization and gene flow in plants. One of our primary goals is to illustrate what we can and cannot infer about hybrids and hybridization from molecular data; in other words, we ask when genetic analyses commonly used to study hybridization might mislead us about the history or nature of gene flow and selection. We focus on patterns of variation when hybridization is recent and populations are polymorphic, which are particularly informative for applied issues, such as contemporary hybridization following recent ecological change. We show that hybridization is not a singular process, but instead a collection of related processes with variable outcomes and consequences. Thus, it will often be inappropriate to generalize about the threats or benefits of hybridization from individual studies, and at minimum, it will be important to avoid categorical thinking about what hybridization and hybrids are. We recommend potential sampling and analytical approaches that should help us confront these complexities of hybridization
Speeding Up Microevolution: The Effects of Increasing Temperature on Selection and Genetic Variance in a Wild Bird Population
The authors show that environmental variation may lead to a positive association between the annual strength of selection and expression of genetic variance in a wild bird population, which can speed up microevolution and have important consequences for how fast natural populations adapt to environmental changes
Confirmation of low genetic diversity and multiple breeding females in a social group of Eurasian badgers from microsatellite and field data
The Eurasian badger (
Meles meles
) is a facultatively social carnivore that shows only rudimentary
co-operative behaviour and a poorly defined social hierarchy. Behavioural evidence
and limited genetic data have suggested that more than one female may breed in a
social group. We combine pregnancy detection by ultrasound and microsatellite locus
scores from a well-studied badger population from Wytham Woods, Oxfordshire, UK, to
demonstrate that multiple females reproduce within a social group. We found that at least
three of seven potential mothers reproduced in a group that contained 11 reproductive age
females and nine offspring. Twelve primers showed variability across the species range and only five of these were variable in Wytham. The microsatellites showed a reduced repeat number, a significantly higher number of nonperfect repeats, and moderate heterozygosity
levels in Wytham. The high frequency of imperfect repeats and demographic phenomena might be responsible for the reduced levels of variability observed in the badger
MĂźllerian mimicry of a quantitative trait despite contrasting levels of genomic divergence and selection
Hybrid zones, where distinct populations meet and interbreed, give insight into how differences between populations are maintained despite gene flow. Studying clines in genetic loci and adaptive traits across hybrid zones is a powerful method for understanding how selection drives differentiation within a single species, but can also be used to compare parallel divergence in different species responding to a common selective pressure. Here, we study parallel divergence of wing colouration in the butterflies Heliconius erato and H. melpomene , which are distantly related MĂźllerian mimics which show parallel geographic variation in both discrete variation in pigmentation, and quantitative variation in structural colour. Using geographic cline analysis, we show that clines in these traits are positioned in roughly the same geographic region for both species, which is consistent with direct selection for mimicry. However, the width of the clines varies markedly between species. This difference is explained in part by variation in the strength of selection acting on colour traits within each species, but may also be influenced by differences in the dispersal rate and total strength of selection against hybrids between the species. Genotypingâbyâsequencing also revealed weaker population structure in H. melpomene , suggesting the hybrid zones may have evolved differently in each species, which may also contribute to the patterns of phenotypic divergence in this system. Overall, we conclude that multiple factors are needed to explain patterns of clinal variation within and between these species, although mimicry has probably played a central role
Spatial Guilds in the Serengeti Food Web Revealed by a Bayesian Group Model
Food webs, networks of feeding relationships among organisms, provide
fundamental insights into mechanisms that determine ecosystem stability and
persistence. Despite long-standing interest in the compartmental structure of
food webs, past network analyses of food webs have been constrained by a
standard definition of compartments, or modules, that requires many links
within compartments and few links between them. Empirical analyses have been
further limited by low-resolution data for primary producers. In this paper, we
present a Bayesian computational method for identifying group structure in food
webs using a flexible definition of a group that can describe both functional
roles and standard compartments. The Serengeti ecosystem provides an
opportunity to examine structure in a newly compiled food web that includes
species-level resolution among plants, allowing us to address whether groups in
the food web correspond to tightly-connected compartments or functional groups,
and whether network structure reflects spatial or trophic organization, or a
combination of the two. We have compiled the major mammalian and plant
components of the Serengeti food web from published literature, and we infer
its group structure using our method. We find that network structure
corresponds to spatially distinct plant groups coupled at higher trophic levels
by groups of herbivores, which are in turn coupled by carnivore groups. Thus
the group structure of the Serengeti web represents a mixture of trophic guild
structure and spatial patterns, in contrast to the standard compartments
typically identified in ecological networks. From data consisting only of nodes
and links, the group structure that emerges supports recent ideas on spatial
coupling and energy channels in ecosystems that have been proposed as important
for persistence.Comment: 28 pages, 6 figures (+ 3 supporting), 2 tables (+ 4 supporting
- âŚ