THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Complex effects of helper relatedness on female extrapair reproduction in a cooperative breeder

Citation for published version:
Hajduk, GK, Cockburn, A, Osmond, HL \& Kruuk, LEB 2021, 'Complex effects of helper relatedness on female extrapair reproduction in a cooperative breeder', Behavioral Ecology, vol. 32, no. 3, pp. 386-394.
https://doi.org/10.1093/beheco/araa142

Digital Object Identifier (DOI):
10.1093/beheco/araa142

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:

Peer reviewed version

Published In:

Behavioral Ecology

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Title: Complex effects of helper relatedness on female extra-pair reproduction in a cooperative breeder
Abbreviated title: Helper relatedness and female extra-pair reproduction
Authors: Gabriela K Hajduk ${ }^{1}$, Andrew Cockburn², Helen L Osmond², Loeske E B Kruuk ${ }^{2}$

Authors' institutional affiliations:

${ }^{1}$ Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
${ }^{2}$ Division of Ecology \& Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia

The name, address, telephone number, and e-mail address of the author responsible for receiving proofs, correspondence, and reprint requests:

Gabriela K Hajduk, gkhajduk@gmail.com. Personal mobile \& current personal address please do not include mobile/address in print: 07908513068; 5 The Birches, Goring, RG8 9BW

The current address of any author(s) whose institutional affiliation has changed since the work reported was performed.

Gabriela K Hajduk is no longer at the University of Edinburgh, but is now an independent scholar with no institutional affiliation.

Funding

G.K.H. was supported by the U.K. Natural Environment Research Council (Grant NE/L002558/1) through the University of Edinburgh's E3 Doctoral Training Partnership. The long-term research has been facilitated by Discovery Project grants from the Australian Research Council to A.C. and L.K., of which the most recent for the data used here was DP150100298, and L.K. was funded by an ARC Future Fellowship FT110100453.

Acknowledgements

Data collection was greatly assisted by the Australian National Botanic Gardens (Canberra, ACT), and many field assistants. We also thank Lyanne Brouwer, Craig Walling, Per Smiseth, Ben Hatchwell, Rob Magrath, and Eve Cooper for useful discussions about the intricacies of the study system, and Amanda Ridley as well as anonymous reviewers for helpful comments on the manuscript.

Data Accessibility Statement

Data used in the analyses presented in the manuscript will be archived in Dryad upon publication of the manuscript.

Lay Summary (70 words)

In superb fairy-wrens, unrelated helpers in a group increased extra-pair paternity, both within and (unexpectedly) outside the group. The presence of helpers who were sons of the breeding female had no effect on mating patterns in this cooperatively breeding species. The results undermine a long-standing explanation for extra-pair paternity, the 'constrained female hypothesis', which suggests that females assisted by helpers have more freedom to mate outside of their social partnership.

Complex effects of helper relatedness on female extra-pair reproduction in a cooperative breeder

Abstract

Abbreviated title: Helper relatedness and female extra-pair reproduction

Abstract

In cooperatively-breeding species, the presence of male helpers in a group often reduces the breeding female's fidelity to her social partner, possibly because there is more than one potential sire in the group. Using a long-term study of cooperatively-breeding superb fairywrens (Malurus cyaneus) and records of paternity in 1936 broods, we show that the effect of helpers on rates of extra-pair paternity varied according to the helpers' relatedness to the breeding female. The presence of unrelated male helpers in a group increased average rates of extra-pair paternity, from 57% for groups with no unrelated helpers, to 74% with one unrelated helper, to 86% with $2+$ unrelated helpers. However, this increase was due in equal part to helpers within the group and males in other groups achieving increased paternity. In contrast, helpers who were sons of the breeding female did not gain paternity, nor did they affect the level of extra-group paternity (which occurred at rates of $60 \%, 58 \%, 61 \%$ in the presence of $0,1,2+$ helper-sons respectively). There was no evidence of effects of helpers' relatedness to the female on nest productivity or nestling performance. Because the presence of helpers per se did not elevate extra-pair reproduction rates, our results undermine the 'constrained female hypothesis' explanation for an increase in extra-pair paternity with helper number in cooperative breeders. However, they indicate that dominant males are disadvantaged by breeding in 'cooperative' groups. The reasons why the presence of unrelated helpers, but not of helper-sons, results in higher rates of extra-group reproduction are not clear.

Introduction

In cooperatively-breeding species, breeding pairs are often assisted by subordinate 'helpers' who may make substantial contributions to offspring care, most obviously through provisioning of young (Koenig and Dickinson, 2016), but also via other aspects such as nest defense (Austad and Rabenold, 1985; Mumme, 1992) or even thermoregulation (Arnold 1990; Du Plessis 2004). Helping often occurs within kin groups of related individuals (Dickinson and Hatchwell, 2004), and levels of helping may therefore vary with the helpers' relatedness to the breeding pair and the resulting offspring: for example, a recent comparative analysis of cooperatively-breeding bird species showed that helpers who are more closely related typically - though not always - provide more care than do unrelated helpers (Green et al. 2016). The presence and relatedness of helpers may also have important implications for other aspects of group life such as the mating patterns of the breeding individuals. In particular, females in many cooperative breeding species may take advantage of the presence of additional subordinate males in their social group to mate with them (Cockburn 2004). In several species it has also been shown that such extra-pair paternity provides an incentive for subordinates to provision at the nest (Burke et al. 1989; Cockburn 2004).

More remarkably, it has also been shown that the presence of helpers within a group can increase the rate of extra-group paternity (Cousseau et al. 2020). In some species with high rates of natal philopatry, closely related males and females can form pair bonds, and extragroup mating has been hypothesized to result from inbreeding avoidance (Brooker et al. 1990; Koenig and Haydock 2004). However, this seems unlikely to explain the mating patterns of the genus which consistently shows the highest incidence of extra-group mating among socially monogamous birds, fairy-wrens (genus Malurus). This is because Malurus species with both high and very low rates of incestuous pairing consistently mate extra-group (Mulder et al. 1994; Cockburn et al. 2013, 2016; Brouwer et al. 2017; Hajduk et al. 2018; Lichtenauer et al. 2019). As an alternative, Mulder et al. (1994) suggested that in the superb fairy-wren, Malurus cyaneus, female reliance on provisioning of the dominant male to rear young successfully was reduced by the presence of additional carers, allowing her to increase her rate of cuckoldry. A general form of this hypothesis has since been called the 'constrained
female hypothesis', and argues that females face a trade-off between choice of mates, genetic quality and their value in providing parental care (Gowaty 1996, 1997; Bennett and Owens 2002).

Here we take advantage of a long-term study of parentage in the species that provoked the constrained female hypothesis. Superb fairy-wrens (M. cyaneus) are socially monogamous, with a single breeding female on each territory socially paired to the senior male on the territory. These breeding pairs may be assisted by up to four (very rarely five) subordinate males, 'helpers', though unassisted pairs are also common. Helpers are behaviorally subordinate to the dominant male, but are reproductively mature: they can sire young and their testosterone levels are no different from those of dominant males living in pairs (Peters et al. 2001). Helpers assist with provisioning of young and defense of the territory (Cockburn et al. 2008b), and their presence increases nestling mass (Kruuk et al. 2015; Hajduk et al. 2018).

We consider here the effects of the presence of different types of helpers on extra-pair paternity, where we categorize helpers based on their relatedness to the breeding female: sons of the breeding female ('helper-sons') vs others ('unrelated helpers'). Superb fairy-wrens have among the highest rate of extra-pair and extra-group paternity among birds: ~83\% of broods have at least one extra-pair offspring (Hajduk et al. 2018), the majority of whom are also extra-group, i.e. sired by males in other social groups (Mulder et al. (1994); see Box 1 for definitions). Extra-pair reproduction is controlled by the female, who initiates extra-group matings on the territory of her preferred male (Double and Cockburn 2000; Cockburn et al. 2009). In M. cyaneus and other Malurus species, rates of EPP increase with increasing numbers of helpers (Mulder et al. 1994; Cockburn et al. 2016; Brouwer et al. 2017; Hajduk et al. 2018). In this study we used data from our 26 -year study of superb fairy-wrens in southeastern Australia (Cockburn et al. 2016) to investigate this effect in more detail, and to determine the effect of the number of related versus unrelated helpers on the rates of both within-group and extra-group extra-pair paternity.

Methods

Study system

The study population consisted of a color-banded population of superb fairy-wrens living in a ~60 ha area located in and around the Australian National Botanic Gardens, Canberra, Australia ($35 \circ 16 \mathrm{~S}, 149 \circ 06 \mathrm{E}$). The study population was censused all 52 weeks of the year (Cockburn et al. 2003), and census records included details of the presence and identity of helpers on each territory. During the breeding season the progress of all nests was monitored, with nestlings banded 5-8 days post-hatching, at which point blood samples were taken for parentage analysis using microsatellite genotypes (see methods in Hajduk et al. (2018)). Fairywrens are multi-brooded: due to heavy nest predation, a female may initiate up to eight clutches in a given year, but will only ever raise a maximum of three broods to fledging. Clutches may contain 1-5 eggs, with a strong mode at 3 eggs (Cockburn et al. 2008b).

Male superb fairy-wrens are philopatric. Most males will queue for dominance on their natal territory, but about a third will end up dispersing to vacant breeding positions on adjacent territories where all the previous males have died (Cockburn et al. 2008a). In contrast, females always disperse before breeding for the first time (usually over three or more territories), so when a female first establishes herself as dominant in a vacant territory, she is unrelated to the dominant male and any subordinate males already present in the group. However, after two or three years of breeding on a territory, a female is likely to have accumulated helpers who are sons. Overall, helpers will therefore vary in their relatedness to the breeding female on the territory, with nearly half of helpers being her sons (47% for the data used here; see also Cockburn et al. 2016). Females never mate with their sons, either dominant or helper (Cockburn et al. 2003; Hajduk et al. 2018). Both unrelated helpers and helper-sons provision the young, and there is no evidence of any difference in their rates of doing so (Dunn et al. (1995), N. Margraf and A. Cockburn, unpubl.).

We categorized all offspring in a brood as to whether they were the result of within-pair, within-group extra-pair, or extra-group paternity: see Box 1 for definitions. We then compared rates of (a) extra-pair vs within-pair paternity; and (b) extra-group vs within-group
paternity across groups with different composition and numbers of helpers. We did not use any finer-scale measure of relatedness between individuals than whether a given helper was the son of the dominant female, as our previous work investigating the associations between the kinship of the social partners and extra-pair reproduction indicated that females never mate with their sons but do not distinguish lower levels of relatedness (Hajduk et al. 2018). These results suggest that females are not able to distinguish finer levels of relatedness, and we therefore considered just two categories of 'unrelated helpers' vs 'helper-sons'.

Social pairings between mothers and sons occurred in $\sim 4 \%$ of all breeding events in our study population, and resulted in 100% female extra-pair reproduction (i.e. all offspring were extrapair (Cockburn et al. 2003; Hajduk et al. 2018)). Furthermore, in all but one of these 73 breeding events for mother-son pairings in the dataset, all helpers were sons of the dominant female. As mother-son pairings appear to be special cases in which mating patterns are determined by extreme inbreeding avoidance (Hajduk et al. 2018), for clarity, we excluded them from the current analyses. The remaining data spanned 26 years (1988-2013) and contained a total of 1936 broods and 5485 nestlings. Sample sizes for models may deviate from that due to removal of missing values from fixed predictors.

Throughout, we treat each brood (rather than each offspring) as a data point. Thus we present mean percentages in each brood for different paternity types (see Box 1). These values are very similar to, but not exactly the same, as percentages calculated across individual nestlings of each paternity type, but they more closely reflect the patterns of paternity by different females, as large broods do not contribute more than smaller broods.

BOX 1: TYPES OF PATERNITY

- within-pair (WP) paternity: offspring sired by the breeding female's social partner, the dominant male on the focal territory
- within-group extra-pair (WGEP) paternity: offspring sired by a helper within the focal social group
- extra-group (EG) paternity: offspring sired by a male from outside the social group that reared the offspring
- within-group (WG) paternity: offspring sired either by the social partner of the breeding female, or by helpers within the focal social group [WG = WP + WGEP]
- extra-pair (EP) paternity: offspring sired by any male other than the breeding female's social partner (either within- or extra-group) [EP = WGEP + EG]

Statistical analyses

All analyses were carried out in R version 3.3.1 (Development Core Team, 2011) using MCMCgImm (Hadfield, 2010) to fit generalized linear mixed models (GLMMs), with a logit link function, using family = multinomial2. Fixed effects were considered statistically significant when the 95% credible intervals (CIs) did not span zero and the pMCMC values were <0.05. In MCMCgImm models we also aimed for an effective sample size of 2000 and autocorrelation below 0.1 for each model, ensuring that the resulting effective sample sizes are above 1000. Parameter expanded priors were used throughout. For detailed iteration and prior information for MCMCgImm models see the Supplementary Information.

We ran two GLMMs, to consider: (a) the proportion of extra-pair offspring in a brood (i.e. EP vs WP); and (b) the proportion of extra-group offspring in a brood (i.e. EG vs WG; see Box 1 for definitions). Both models had the same fixed and random structures. The fixed effects were: for each brood, covariates of the number of helper-sons ($0-4$) and the number of unrelated helpers ($0-4$) attending each brood, and mother's age and the age of the dominant male on the territory (social father's age). Age was initially fitted as a two-level factor of one-year-old vs older. We used this dichotomous classification for several reasons. First, investment in all aspects of reproduction by females increases sharply between the first and second year of age, but tends to asymptote thereafter (Cockburn et al 1998; Cockburn et al. 2008b; Kruuk et al 2015). Second, first year females cannot be paired to their sons. Third, females generally form their first pair bond after a dispersal movement just before the breeding season. This means that they lack information about important features of the males with which they choose to mate, including what appears to be the chief criterion for extragroup mate choice, the amount of time before the breeding season that the male has nuptial plumage (Cockburn et al. 2008c). Finally, this enabled us to include information from the class of individuals whose birth cohort was unknown, but which were known to be older than one-year-old. However, we also repeated the analyses using age as a continuous variable, which did not change conclusions (see Supplementary Information, Tables B3, B4, and B5). For random effects, we fitted mother ID and social father ID to account for multiple observations,
and cohort as a multilevel factor to account for year-to-year variation (1988-2013; each cohort consists of nestlings from one breeding season, so for example 1998 denotes August 1998 to March 1999).

Additionally, we re-ran both of the above models on randomly-selected subsets of 50% of the dataset ten times, to generate within-study replication (see the Supplementary Information for details).

As a final component, because the 'constrained female' hypothesis relies on the contributions of helpers to offspring care, we also tested for any effect of helpers of different relatedness (sons or unrelated) on nestling performance or brood productivity. We assessed offspring performance by modelling offspring survival to measurement age (5-8 days after hatching), and nestling mass. We also investigated whether the relatedness of the helpers to the mother affected her investment in the breeding attempt, as assessed by the clutch size (number of eggs) of each brood. We fitted a model disentangling helper number from helpers' relatedness to the breeding female to ensure that our main results are not being biased by the known correlation between the number of helpers and nestling mass.

Results

Superb fairy-wren breeding events varied both in the presence and relatedness of subordinate helper males in the group, and in the fidelity of the breeding female to her social partner. The dominant pair on the territory was assisted by one or more helpers in 879 out of the total 1936 (45\%) broods. Of these, 363 were assisted exclusively by helper-sons, 435 were assisted exclusively by unrelated helpers, and 81 were assisted by a mix of unrelated helpers and helper-sons. As in previous work on this species, extra-pair reproduction levels were very high: across all broods, 62% of offspring were extra-pair.

Our models of the effect of social environment showed that the proportion of extra-pair offspring per brood increased substantially with increasing numbers of unrelated helpers, but did not change with numbers of helper-sons (Figure 1a; Table 1a). These results were robust to sub-sampling and confirmed in a replication study (Supplementary Information, Figure A1).

Further, rates of extra-group paternity also increased with numbers of unrelated helpers, but again did not change with numbers of helper sons (Figure 1b; Table 1b). The GLMMs also showed that older females produced a higher proportion of both EP and EG offspring (Table 1). In contrast, there was evidence in this model that older 'social fathers' (i.e. dominant males) had a lower proportion of EG offspring than did one-year-olds. However, this effect should be interpreted with caution, as it was not supported either in replicate analyses of 50% subsets of the data (Figure A1), nor if the social male's age was fitted as a continuous covariate (Tables B4, B5). Fitting parental age as a continuous covariate did not change the conclusions regarding effects of numbers of helper sons or unrelated helpers (see Supplementary Information, Tables B3, B4, and B5). There was also substantial variance between females and between dominant males in the rates of both EP and EG paternity in each brood (random effects variance components in Table 1).

Across all broods, the average proportion of nestlings resulting from extra-group (EG) paternity was 60% and EG accounted for the majority of paternity across all further categorizations, regardless of the presence of helpers and their relatedness to the breeding female (Table 2a). Groups with at least one unrelated helper had an average of 10% withingroup extra-pair (WGEP) paternity (Table 2 b , second row). WGEP was 0% in broods with only helper-sons, confirming the observation that females do not mate with their sons, and also necessarily - 0% in broods with no helpers. Groups with at least one unrelated helper had an average of 67% extra-group paternity (Table 2b, second row), as compared to 57% EG in groups with no unrelated helpers (Figure 1b, top panel: this comprises both unassisted groups and those with just helper-sons). In summary, the presence of unrelated helpers in a group was associated with increased rates of EPP through a 10% increase in within-group EPP plus a 10% increase in extra-group EPP. Thus, the reduced success of dominant males in the presence of unrelated helpers in the group was due to the paternity being allocated away from the group as much as to the helpers within the group.

There was no indication of any difference between the effects of helper-sons versus unrelated helpers on nestling performance or productivity (see Supplementary Information). In brief, nestling mass increased with numbers of both helper-sons and unrelated helpers, to almost
exactly the same degree (Table 3a). Adding a factor to test for differences between groups of different composition (mixed groups, vs all sons, vs all unrelated) also showed no indication of any different in nestling mass ($p=0.665$, Table A2), nor was there any association between the numbers of helpers of different relatedness-type and survival to measurement age (Table 3b). Finally, we found no association between the effects of different levels of helper relatedness and clutch size (Table A4).

Discussion

In this study, we used a long-term dataset on the cooperatively-breeding superb fairy-wren to investigate how female extra-pair reproduction changed according to the social environment. Extra-pair paternity was always greater than 50% of offspring regardless of the type and number of helpers in a group, and increased further with the number of helpers in a group, but only when these helpers were unrelated to the breeding female. Both extra-pair and extra-group reproduction contributed to this increase, by very similar amounts. Our results are based on records of nearly two thousand breeding events over twenty-six years, and were robust to replication by sub-sampling. Below we first discuss their implications for the understanding of extra-pair paternity, and then consider possible explanations for the novel observation of differences between effects of helpers of different relatedness.

The reasons for extra-pair paternity (EPP) in socially-monogamous species remain the subject of ongoing debate (Griffith et al. 2002; Westneat and Stewart 2003; Eliassen and Jorgensen, 2014; Forstmeier et al. 2014; Hsu et al. 2015), not least because of the challenges inherent in empirical tests of competing hypotheses. In Malurus (fairy-wrens), inbreeding avoidance was originally hypothesized to be the evolutionary force driving extra-group mating, as in some populations incestuous social pairings are common (Brooker et al. 1990). This now seems unlikely for at least two reasons. First, incestuous social pairings vary from extremely rare to over 20% of pairings, yet this does not affect the extra-group mating rate (Cockburn et al. 2013, 2016; Brouwer et al. 2017). Not least, in this study population of M. cyaneus, 61% of individuals are extra-pair, with 82.8% of broods have at least one extra-pair young, but only 4.2% of social pairings are between close relatives (Hajduk et al. 2018). Secondly, in the
species with the highest rate of extra-group matings, the red-winged fairy-wren (M. elegans), nuclear family inbreeding occurs and is costly, but is equally likely to arise from extra-group and within-group fertilisations (Lichtenauer et al. 2019).

An alternative scenario generating selection for EPP, the 'constrained female hypothesis' (Mulder et al. 1994; Gowaty, 1996, 1997), proposes that female extra-pair reproduction in socially-monogamous species is more likely when the need for paternal care of offspring is reduced. As a result, in cooperatively breeding systems, females assisted by helpers may be predicted to have higher rates of extra-pair reproduction than unassisted females, because they will be less dependent on their male partner for assistance in raising the young. Increased rates of extra-pair paternity in the presence of helpers have been interpreted as support for the constrained female hypothesis in the cooperatively breeding placid greenbul Phyllastrephus placidus (Cousseau et al. 2020), although there was no change in EPP rates with numbers of helpers in Seychelles warblers (Raj Pant et al. 2020). In superb fairy-wrens, although the presence of helpers is not a prerequisite for breeding, females usually cannot raise young without male assistance in some form; they will also abandon breeding attempts if the number of helpers is unexpectedly reduced (Dunn and Cockburn, 1996). This suggests that helpers provide valuable support during breeding, and hence that the constrained female hypothesis might explain the increased EPP observed in the presence of helpers (Mulder et al. 1994; Brouwer et al. 2011), although possibly not the ubiquitously high average rates of EPP regardless of helper presence.

Our analyses here, however, showed that while overall rates of extra-pair reproduction were very high, extra-pair paternity only increased when females were assisted by unrelated helpers, and did not change when they were assisted by helper-sons. Thus these results would only be compatible with the 'constrained female hypothesis' if unrelated helpers provide useful assistance (lifting the 'constraint' of requiring additional care) but helper-sons do not. The notion is difficult to test directly, but we found no evidence of any associations between helper relatedness and any measures of nest productivity or offspring performance (nestling mass and survival; see Supplementary Information, and also Cooper et al. 2020b), suggesting no differences in care levels. There is also no evidence that helper-sons and unrelated helpers provision nestlings at different rates (Dunn et al. (1995); N. Margraf and A. Cockburn,
unpubl.). Thus our results appear to be at odds with the constrained female hypothesis as an explanation for variation in extra-pair paternity with helper presence in superb fairy-wrens.

The most plausible explanation for the occurrence of EPP in this species may be that a female uses it to realize her optimum mate choice without the limitation of needing to be socially paired to him (Cockburn et al. 2013) - but that somehow the distribution of paternity is differentially affected by, or at least associated with, the presence of unrelated helpers. Below, we consider possible explanations for how this might occur.

An immediate explanation for increased extra-pair paternity in the presence of unrelated helpers is that these helpers sire offspring within their groups: when a group has at least one unrelated helper, the helper(s) will sire on average 30% of the total within-group young (i.e. WP + WGEP; Table 2). Helpers are sexually mature (Mulder and Cockburn, 1993; Peters et al. 2001) and fertile, and can themselves secure extra-group paternity relatively often (Double and Cockburn, 2003; Cockburn et al. 2009) - even if their lower social status and (typically) younger age means their within-group reproductive success is usually lower than that of dominants (Cockburn et al. 2008a; Cooper et al. 2000a). Nevertheless, most extra-pair offspring were sired by males from other groups, regardless of helper numbers or relatedness (Table 2, EG). Increased within-group extra-pair paternity therefore cannot explain the similar-sized increase in the proportion of extra-group offspring in broods assisted by unrelated helpers.

What then explains the unexpected contrast between an increase in extra-group paternity with numbers of unrelated helpers, but not with numbers of helper-sons? We can speculate about possible direct and indirect explanations. Direct explanations invoke effects of the presence of unrelated helpers on the behavior or physiology of the dominant male and/or the female in ways that change the distribution of paternity. Helper-sons pose no threat (as females do not mate with their sons), but dominant males in groups with unrelated helpers could be adjusting their behavior in an attempt to reduce within-group extra-pair matings. There is some evidence in this population of mate guarding: the dominant male defends the female vigorously against helpers in a 30-minute window after she has returned from the early-morning extra-group forays during which extra-group copulations occur (Cockburn et
al. 2016), in ways that may even involve extreme violence. Such behavior could delay his subsequent mating with her, potentially biasing sperm competition, and hence fertilization, in favor of the extra-group males with whom she has mated earlier. Dominant males in groups with helpers have elevated testosterone levels relative to those without helpers, potentially reflecting the need to assert dominance (Peters et al. 2001). We do not know whether testosterone elevation occurs differentially in the presence of unrelated helpers, but our observations suggest that dominant males are highly aggressive towards both unrelated helpers and helper-sons.

We can also consider explanations based on indirect effects of confounding factors. Spatial heterogeneity in environmental conditions may influence both group size and rates of extrapair reproduction. However, it is difficult to envisage any scenario whereby numbers of unrelated helpers but not helper-sons could be spatially associated with rates of extra-pair and extra-group copulation. This is especially so since superb fairy-wren females may travel over relatively long distances (several territories (Double and Cockburn, 2000)) for extragroup fertilizations. Secondly, temporal covariance in group composition and extra-pair reproduction is also unlikely, because of the lack of any temporal variance in mating patterns, as indicated by the small 'cohort' variance components in Table 1. Third, extra-pair reproduction changes with both female and male age in cooperative breeders (e.g. Hsu et al. 2017; Part et al. 2019). Here, as outlined above, a female's age may be associated with both her mating patterns and the helpers in her group, but as we included female age in our models, any such effects are unlikely to be driving the association shown here. Dunn \& Cockburn (1999) found that females substantially older than their social mate tended to cuckold him completely, and we suspect that this pattern is one explanation for the higher cuckoldry of one-year old social mates, although we do not want to make too much of this result, as it was not significant using different parameterisations of social male age, or in the subset-replications (Supplementary Information, Figure A1 and Tables B4, B5). Unfortunately, demographic changes associated with rainfall deficits and higher temperatures since 2001 mean that it is difficult to investigate this suggestion further, as the pairings where females are substantially older than their social mates have become rarer, and are dominated by the cases where the female is paired to her son. One final possibility is the role of behavioral differences between females: for instance, if females that are more likely to move territories
between breeding events (and so end up with unrelated helpers) are also more likely to mate with extra-group males. However, this scenario would not explain the increase in EPP and EPG between one and 2+ unrelated helpers. In summary, at present, the reasons for the difference between the effect of helper-sons vs unrelated helpers are difficult to pin down.

The results raise the question as to why dominant males tolerate unrelated helpers in their group, when female extra-pair reproduction increases in their presence? There is no apparent advantage of having helpers in terms of attracting potential mates, since larger aggregations of males during the dawn chorus do not result in more per capita visits from females (Cockburn et al. 2009), and although helpers lower the rate at which dominant males provision nestlings, this does not lead to increased survival for the male (Cockburn et al. 2008b). Any indirect benefits via helpers' additional provisioning of chicks also do not appear to be sufficient to counter the loss of paternity. We suspect that the answer lies in the asymmetry of extra-group fertilizations, which are skewed towards a few attractive males (Cockburn et al. 2016). Most dominant males only gain paternity through within-pair mating with their social partner, and our previous work indicates that eviction of helpers could jeopardize this pathway to reproductive success: experimental reduction of group size by temporary removal of helpers during the breeding season can lead the female to divorce the male (Dunn and Cockburn 2006). Dominant males may therefore be obliged to 'make the worst of a good job' and to accept the presence of helpers as the safest route to at least some reproductive success (Cockburn et al. 2016).

In conclusion, our study illustrates how relatedness between individuals can potentially affect important aspects of group dynamics and mating patterns in complex animal groups. We observed a substantial increase in rates of extra-group paternity in the presence of unrelated helpers, but not in the presence of helper-sons. The result undermines the 'constrained female' explanation for extra-pair reproduction increasing with helper number due to the female being able to express "free choice" in the presence of helpers, an observation which is now ripe for testing in other species (see Brouwer et al. (2017) for synthesis of related work done to date in Malurus). The reason for the differential effects of helper relatedness is not clear, although we can speculate on various potential direct or indirect explanations. More generally, the results illustrate how intrinsic characteristics of conspecifics, rather than just
their numbers, can have important implications for multiple aspects of group dynamics. We have shown here that particular characteristics of these conspecifics may play a crucial role in shaping reproductive patterns.

References

Arnold W. 1990. The evolution of marmot sociality: II. Costs and benefits of joint hibernation; Behavioral Ecology and Sociobiology; 27:239-246.

Austad SN, Rabenold KN. 1985. Reproductive enhancement by helpers and an experimental inquiry into its mechanism in the bicolored wren; Behavioral Ecology and Sociobiology; 17:1927.

Brooker MG, Rowley I, Adams M, Baverstock PR. 1990. Promiscuity: an inbreeding avoidance mechanism in a socially monogamous species? Behavioral Ecology and Sociobiology; 26:191200.

Brouwer L, van de Pol M, Atema E, Cockburn A. 2011. Strategic promiscuity helps avoid inbreeding at multiple levels in a cooperative breeder where both sexes are philopatric; Molecular Ecology; 20:4796-4807.

Brouwer L, van de Pol M, Hidalgo Aranzamendi N, Bain G, Baldassare DT, Brooker LC, Brooker MG, Colombelli-Negrel D, Enbody E, Gielow K, Hall ML, Johnson AE, Karubian J, Kingma SA, Kleindorfer S, Louter M, Mulder RA, Peters A, Pruett-Jones S, Tarvin KA, Thrasher DJ, VarianRamos C, Webster MS, Cockburn A. 2017. Multiple hypotheses explain variation in extra-pair paternity at different levels in a single bird family; Molecular Ecology; 26:6717-6729.

Burke T, Davies NB, Bruford MW, Hatchwell BJ. 1989. Parental care and mating behaviour of polyandrous dunnocks Prunella modularis related to paternity by DNA fingerprinting; Nature; 338:249-251.

Cockburn A. 2004. Mating systems and sexual conflict. Ecology and Evolution of Cooperative Breeding in Birds. Walter D Koenig and JL Dickinson, Cambridge University Press: 81-101.

Cockburn A, Brouwer L, Double MC, Margraf N, van de Pol M. 2013. Evolutionary origins and persistence of infidelity in Malurus: the least faithful birds; Emu; 113:208-217.

Cockburn A, Brouwer L, Margraf N, Osmond HL, van de Pol M. 2016. Making the worst of a good job: cooperative breeding in superb fairy-wrens; in Koenig WD and Dickinson JL, eds., Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior; Cambridge, UK: Cambridge University Press; 133-149.

Cockburn A, Dalziell AH, Blackmore CJ, Double MC, Kokko H, Osmond HL, Beck NR, Head ML, Wells K. 2009. Superb fairy-wren males aggregate into hidden leks to solicit extra group fertilisations before dawn; Behavioural Ecology; 20:501-510.

Cockburn A, Osmond HL, Mulder RA, Double MC, Green DJ. 2008a. Demography of male reproductive queues in cooperatively breeding superb fairy-wrens Malurus cyaneus; Journal of Animal Ecology; 77:297-304.

Cockburn A, Osmond HL, Mulder RA, Green DJ, Double MC. 2003. Divorce, dispersal and incest avoidance in the cooperatively breeding superb fairy-wren Malurus cyaneus; Journal of Animal Ecology; 72:189-202.

Cockburn A, Sims RA, Osmond HL, Green DJ, Double MC, Mulder RA. 2008b. Can we measure the benefits of help in cooperatively breeding birds: the case of superb fairy-wrens Malurus cyaneus? Journal of Animal Ecology; 77:430-438.

Cockburn A, Osmond HL, Double MC. 2008c. Swingin' in the rain: condition dependence and sexual selection in a capricious world; Proceedings of the Royal Society B; 275:605-612.

Cooper E, Bonnet T, Osmond H, Cockburn A, Kruuk LEB. 2020a. Ageing and senescence across reproductive traits and survival in superb fairy-wrens (Malurus cyaneus); American Naturalist; in press.

Cooper E, Bonnet T, Cockburn A, Kruuk LEB. 2020b. Do the ages of parents or helpers affect offspring fitness in a cooperatively breeding bird? Journal of Evolutionary Biology; in press.

Cousseau L, Van de Loock D, Githiru M, Vangestel C, Lens L. 2020. Female need for paternal case shapes variation in extra-pair paternity in a cooperative breeder; Behavioral Ecology; arz215.

Development Core Team. 2011. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing.

Dickinson JL, Hatchwell BJ. 2004. Fitness consequences of helping; in Koenig WD and Dickinson JL, eds., Ecology and Evolution of Cooperative Breeding in Birds; 48-66.

Double MC, Cockburn A. 2000. Pre-dawn infidelity: females control extra-pair mating in superb fairy-wrens; Proceedings of the Royal Society B; 267:465-470.

Double MC, Cockburn A. 2003. Subordinate superb fairy-wrens (Malurus cyaneus) parasitize the reproductive success of attractive dominant males; Proceedings of the Royal Society B; 270:379-384.

Du Plessis MA. 2004. Physiological ecology; in Koenig WD and Dickinson JL, eds., Ecology and Evolution of Cooperative Breeding in Birds; 117-127.

Dunn PO, Cockburn A. 1996. Evolution of male paternal care in a bird with almost complete cuckoldry; Evolution; 50:2542-2548.

Dunn PO, Cockburn A. 1999. Extra-pair mate choice and honest signaling in cooperativelybreeding superb fairy-wrens; Evolution; 53:938-946.

Dunn PO, Cockburn A, Mulder RA. 1995. Fairy-wren helpers often care for young to which they are unrelated; Proceedings of the Royal Society B; 259:339-343.

Eliassen S, Jorgensen C. 2014. Extra-pair mating and evolution of cooperative neighbourhoods; PLOS ONE; 9:e99 878.

Forstmeier W, Nakagawa S, Griffith SC, Kempenaers B. 2014. Female extra-pair mating: adaptation or genetic constraint? Trends in Ecology and Evolution; 29:456-464.

Gowaty PA. 1996. Battles of the sexes and origins of monogamy; in Black JM, ed., Partnerships in birds: The study of monogamy; Oxford: Oxford University Press; 21-52.

Gowaty PA. 1997. Field studies of parental care in birds: New data focus questions on variation in females; in Snowdon CT and Rosenblatt JS, eds., Advances in the study of behaviour; New York: Academic Press; 476-531.

Green JP, Freckleton RP, Hatchwell BJ. 2016. Variation in helper effort among cooperatively breeding bird species is consistent with Hamilton's Rule; Nature Communications; 7:12 663.

Griffith SC, Owens IPF, Thuman KA. 2002. Extra-pair paternity in birds: a review of interspecific variation and adaptive function; Molecular Ecology; 11:2195-2212.

Hadfield JD. 2010. MCMC methods for multi-response generalized linear mixed models: The MCMCgImm R package; Journal of Statistical Software; 33:1-22.

Hajduk GK, Cockburn A, Margraf N, Osmond HL, Walling CA, Kruuk LEB. 2018. Inbreeding, inbreeding depression, and infidelity in a cooperatively breeding bird; Evolution; 72:15001514.

Hsu Y-H, Schroeder J, Winney I, Burke T, Nakagawa S. 2015. Are extra-pair males different from cuckolded males? A case study and a meta-analytic examination; Molecular Ecology; 24:1558-1571.

Hsu Y-H, Simons MJP, Schroeder J, Girndt A, Winney IS, Burke T, Nakagawa S. 2017. Agedependent trajectories differ between within-pair and extra-pair paternity success; Journal of Evolutionary Biology; 30:951-959.

Koenig WD, Dickinson JL. 2016. Cooperative Breeding in Vertebrates: Studies of Ecology, Evolution, and Behavior. Cambridge, Cambridge University Press.

Koenig WD, Haydock J. 2004. Incest and incest avoidance. in W. D. Koenig, and J. L. Dickinson, eds. Ecology and evolution of cooperative breeding in birds. Cambridge University Press, Cambridge and New York.

Kruuk LEB, Osmond HL, Cockburn A. 2015. Contrasting effects of climate on juvenile body size in a Southern Hemisphere passerine bird; Global Change Biology; 21:2929-2941.

Mulder RA, Cockburn A. 1993. Sperm competition and the reproductive anatomy of male superb fairy-wrens; The Auk; 110:588-593.

Mulder RA, Dunn PO, Cockburn A, Lazenby-Cohen KA, Howell MJ. 1994. Helpers liberate female fairy-wrens from constraints on extra-pair mate choice; Proceedings of the Royal Society B; 255:223229.

Mumme RL. 1992. Do helpers increase reproductive success? Behavioral Ecology and Sociobiology; 31:319-328.

Lichtenauer W, van de Pol M, Cockburn A, Brouwer L. 2019. Indirect fitness benefits through extra-pair mating are large for an inbred minority, but cannot explain widespread infidelity among red-winged fairy-wrens; Evolution; 73:467-480.

Peters A, Astheimer LB, Cockburn A. 2001. The annual testosterone profile in cooperatively breeding superb fairy-wrens, Malurus cyaneus, reflects their extreme infidelity; Behavioral Ecology and Sociobiology; 50:519-527.

Raj Pant S, Komdeur J, Burke TA, Dugdale HL, Richardson DS. 2019. Socio-ecological conditions and female infidelity in the Seychelles warbler; Behavioral Ecology; arz072.

Raj Pant S, Hammers M, Komdeur J, Burke TA, Dugdale HL, Richardson DS. 2020. Agedependent changes in infidelity in Seychelles warblers; Molecular Ecology; 00:1-16.

Westneat DF, Stewart IRK. 2003. Extra-pair paternity in birds: Causes, correlates, and conflict; Annual Review of Ecology, Evolution, and Systematics; 34:365-396.

Figures

Figure 1. The effects of the numbers of helper-sons (orange triangles) and of unrelated helpers (blue dots) on percentages of (a) extra-pair offspring (EPO), and (b) extra-group offspring (EGO) in a brood. Points represent average \% (± 1 SE) for EPO or EGO percentages in each brood (raw data for all broods) per helper category; there were few broods with 3 or 4 helpers of either type, so we combined these with broods with 2 helpers to create the ' $2+$ ' category in the figure. Sample sizes (number of broods) are given next to the points. Note (i) that the y-axes start at 50%, reflecting the widespread extra-pair reproduction in the population; and (ii) the 'zero' category on the x-axes represents broods where there are no helpers of that particular type: this is therefore a combination of broods that are completely unassisted (and have the lowest rates of extra-pair paternity at $\sim 57 \%$, Table 2a) plus broods that are assisted only by the helpers of the other type.

Figure 2. Matrix showing the numbers of broods of different types, with bar charts illustrating the percentage of within-pair (WP), within-group extra-pair (WGEP), and extra-group (EG) in each category. Note: (i) in the right-hand panel, the very low levels of WGEP (blue) will be paternity going to unrelated helpers also present in those groups; and (ii) in the top panel, WGEP $=0 \%$ in groups with no unrelated helpers, because WGEP always goes to unrelated helpers.

Tables and table legends

Table 1. GLMM of the influence of the numbers of helper-sons and unrelated helpers on the proportion of (a) extra-pair and (b) extra-group offspring in a brood. Analyses were carried out at the brood level for (a) numbers of extra-pair vs within-pair offspring in each brood; and (b) numbers of extra-group vs within-group offspring in each brood. Sample size indicates total numbers of broods, and cohort represents the 26 breeding seasons 1988-2013.

Fixed effects	response: proportion of			
	(a) extra-pair offspring		(b) extra-group offspring	
	Estimate (95\% CI)	P	Estimate (95\% CI)	P
intercept	0.37 (0.03, 0.72)	0.038	0.43 (0.06, 0.75)	0.014
mother age (1yo, older) older	0.39 (0.11, 0.64)	0.001	0.40 (0.14, 0.66)	0.004
social father age (1yo, older) older	-0.29 (-0.65, 0.03)	0.107	-0.38 (-0.72, -0.04)	0.030
number of helper-sons	0.09 (-0.08, 0.26)	0.304	0.10 (-0.07, 0.27)	0.272
number of unrelated helpers	1.02 (0.84, 1.22)	<0.001	0.47 (0.29, 0.65)	<0.001
Random effects	Variance (95\% CI)		Variance (95\% CI)	
mother ID	0.54 (0.21, 0.84)		0.58 (0.27, 0.90)	
social father ID	0.60 (0.30, 0.92)		0.54 (0.25, 0.83)	
cohort	$0.01\left(1.34^{-8}, 0.05\right)$		$0.02\left(1.62^{-8}, 0.06\right)$	
residual variance	1.75 (1.30, 2.17)		1.80 (1.37, 2.23)	
Sample size	1929		1929	

[^0]Table 2. Mean percentages of within-pair (WP), within-group extra-pair (WGEP) and extragroup (EG) paternity across broods, split by the presence and relatedness type of helpers (helper-sons vs unrelated helpers) in each group.

type of help	paternity (\%)			sample size (n broods)
	WP	WGEP (extra	$\begin{gathered} \text { EG } \\ \text { pair) } \end{gathered}$	
(a) all broods ($\mathrm{n}=1936$)				
all broods	37.7	2.7	59.6	1936
no helpers	43.1	0.0	56.9	1057
≥ 1 helper	31.1	6.0	62.8	879
(b) assisted broods ($\mathrm{n}=879$) - effect of helper relatedness				
≥ 1 helper-son	39.2	$1.6 \dagger$	59.2	444
≥ 1 unrelated	23.2	10.3	66.5	516
(c) assisted broods ($n=879$) - effect of group composition				
helper-sons	42.5	0.0	57.5	363
mixed	24.5	8.5	67.0	81
unrelated	23.0	10.6	66.5	435

[^1]Table 3. (a) Association between the numbers of helper-sons/unrelated helpers and nestling mass. Sample size indicates number of nestlings. (b) Effects of the numbers of helper-sons and unrelated helpers on survival of offspring to measurement age (5-8 days post-hatching). These analyses were carried out at the brood level in MCMCgImm.

	nestling mass		early survival	
	(a)		(b)	
Fixed effects	Estimate (SE)	P	Estimate (95\% CI)	P
intercept	-3.69 (1.13)	0.002	-0.24 (-0.90, 0.36)	0.474
1992 (1992+, pre-1992)		<0.001	n/a	
pre-1992	0.58 (0.10)		n/a	
nestling age	2.10 (0.33)	<0.001	n/a	
nestling age ${ }^{2}$	-0.08 (0.02)	<0.001	n / a	
brood size	-0.05 (0.02)	0.021	n/a	
sex (female, male)		<0.001	n/a	
male	0.15 (0.02)			
mother age (1yo, older)	n / a			
older	n / a		$0.03(-0.12,0.17)$	0.731
social father age (1yo, older)	n / a			
older	n/a		-0.01 (-0.20, 0.18)	0.939
average nestling age	n / a		0.01 (-0.07, 0.10)	0.845
inbreeding coefficient	-3.07 (1.18)	0.010	n/a	
number of helper-sons	0.10 (0.02)	<0.001	0.01 (-0.08, 0.10)	0.814
number of unrelated helpers	0.10 (0.02)	<0.001	$0.005(-0.09,0.10)$	0.928
Random effects	Variance (SE)		Variance (95\% CI)	
mother ID	n / a		$0.001\left(2.35^{-10}, 0.004\right)$	
social father ID	n/a		$0.001\left(2.13^{-10}, 0.004\right)$	
cohort	0.01 (0.01)		$0.001\left(1.52^{-12}, 0.005\right)$	
nest ID	0.26 (0.01)		n / a	
hatch date	0.01 (0.01)		n / a	
residual variance	0.24 (0.01)		n/a	
Sample size	4910		1838	

* (a) This analysis was carried out at the level of individual offspring, in ASReml-R. Standard errors (SE) for the estimates and variance components are reported in brackets. See SI Section A2.1 for details of the model. (b) Estimates and variance components reported are based on posterior means and 95% credible intervals; note that MCMCgImm constrains variance components to be positive, thus the low values for random effects suggest that none of the phenotypic variation can be attributed to these random effects). See SI Section A2.1 for details of the model.

[^0]: * Estimates and variance components reported are based on posterior means, with 95% credible intervals (Cls), on the logit link scale, from MCMCgImm models. P values were based on pMCMC (the number of simulations in which the parameter estimate was greater or less than zero, corrected for number of MCMC samples).

[^1]: * Values shown are the means of the percentages calculated for each brood. The data are presented as follows: (a) all broods; (b) assisted broods, showing the effect of helper relatedness type; (c) assisted broods, showing the effect of group composition with regard to helper relatedness type. Total $n=1936$ broods, with 5485 nestlings, across 26 years.

