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By the Robertson—Price identity, the change in a quantitative trait owing to
selection, is equal to the trait’s covariance with relative fitness. In this study,
we applied the identity to long-term data on superb fairy-wrens Malurus cya-
neus, to estimate phenotypic and genetic change owing to juvenile viability
selection. Mortality in the four-week period between fledging and indepen-
dence was 40%, and heavier nestlings were more likely to survive, but why?
There was additive genetic variance for both nestling mass and survival, and
a positive phenotypic covariance between the traits, but no evidence of addi-
tive genetic covariance. Comparing standardized gradients, the phenotypic
selection gradient was positive, fp = 0.108 (0.036, 0.187 95% CI), whereas the
genetic gradient was not different from zero, g = —0.025 (-0.19, 0.107 95%
CI). This suggests that factors other than nestling mass were the cause of vari-
ation in survival. In particular, there were temporal correlations between mass
and survival both within and between years. We suggest that use of the Price
equation to describe cross-generational change in the wild may be challenging,
but a more modest aim of estimating its first term, the Robertson—Price identity,
to assess within-generation change can provide valuable insights into the
processes shaping phenotypic diversity in natural populations.

This article is part of the theme issue ‘Fifty years of the Price equation’.

1. Introduction

Mathematical theory provides a useful framework with which to investigate the
immense complexity of the biological world. In one of the best examples of its
application, Price’s theorem (or ‘the Price equation’; [1]) provides a simple and
yet comprehensive means of describing the change in a biological entity across
a chosen time-step. The Price equation constitutes the ‘algebra of evolution’ [2]
and arguably deserves to be known as the ‘fundamental’ theorem of evolution
[3], as it holds true in all situations, for all biological entities, and can be used to
describe any biological dynamics at any scale, from population genetics to
population ecology [3,4]. As outlined in detail in other papers in this Special
Issue, the Price equation is based on the straightforward observation that the
mean value of any entity in a population at a given time point is determined
by two components: the frequency of different classes of individuals in the
population, and the value of the entity within each of those classes. The
change in the mean value of the entity across a given time-step is then deter-
mined by (i) the change in the relative frequency of the different classes and
(ii) the change in value of the entity within each class across the time-step.
This is such elegant and impeccable logic that it brings to mind Huxley’s
quoted response to Darwin’s theory of natural selection: ‘How extremely
stupid not to have thought of that!" [5, p. 197].
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The Price equation can be applied in a quantitative genetic
framework, to describe the evolution of complex traits within
populations. Thinking about the dynamics of a quantitative
phenotypic trait, the change in the mean of the trait from one
time point to another can be written as the sum of two com-
ponents: the first owing to variation in fitness, which is the
effect of selection changing the contributions from individuals
of different trait values, and the second owing to changes in the
expression of the trait over the time-step (which may be for var-
ious reasons, such as imperfect transmission or phenotypic
plasticity) [1,2,6,7]. Although the Price equation is usually con-
sidered in the context of describing change across generations, it
is also equally valid for considering change within a generation,
for example owing to variation in survival—and even just to
variation in survival of a particular life-stage, or episode of
selection [2]. This application to a single episode of selection
is obviously considerably simpler to analyse as there is no
‘transmission phase’. The Price equation then reduces to its
first term, and simply asks: how does variation in survival of
a particular episode of selection change the mean of a trait? For-
mally, the first term of the Price equation thus specifies the
change in the mean of the trait, Az, owing to selection as

Az = SP = O'P(Z,ZU), (11)

where Sp is a selection differential and op(z,w) is the covariance
between the phenotypic trait z and relative fitness w [1]
(we use a subscript P here to denote phenotypic values, to
distinguish from what follows).

If there is heritable genetic variance for the trait, we can
also consider whether the phenotypic selection will result
in genetic change, which would then ultimately contribute
to evolutionary change across generations. The correspond-
ing change in the mean additive genetic value of the trait
owing to variation in survival is an equivalent ‘genetic
differential’ Sa:

Ad = Sp = o(a,w) = oa(zw), (1.2)

where g, is the ‘breeding value’ (additive genetic merit) for z,
and o, is the additive genetic covariance between the trait
and relative fitness [1,6]. Again, because we are only consider-
ing the contribution of selection to change within a generation,
there is no transmission term to worry about. In a very nice
example of the convergence of evolutionary theory, equation
(1.2) was also derived at a similar time by a quantitative geneti-
cist, Alan Robertson, in the context of predicting responses to
selection in animal breeding [8,9]. As with the Price equation,
there are interesting conceptual variations in the interpretation
of Robertson’s prediction (see [6], pp. 165 and p. 682 for an
excellent discussion, including of the equivalence of the final
two terms in equation (1.2)). However, for practical purposes,
the key point is that the ‘Robertson-Price identity’ can be
used to estimate within-generation change, at either the
phenotypic level (equation (1.1) above) or the genetic level
(equation (1.2)).

Although the Robertson-Price identity describes change
within a generation, the ulterior motive for considering
change in the genetic component of a trait is always likely to
be because of the implications for change across generations,
i.e. an evolutionary response. Thus the effect of selection in
changing the mean of individuals’ additive genetic com-
ponents (or breeding values [10]) within a generation is
equivalent to the contribution of that selection to changes in
the mean phenotype between generations. The between-

generational change in phenotypic mean owing to this selec-
tion, R,, is then also given by R, = oa(zw); this is
Robertson’s Secondary Theorem of Natural Selection [9]. The
genetic covariance between a trait and fitness is thus more typi-
cally considered in relation to predicting change from one
generation to the next, because this is a larger question in
which both evolutionary biologists and animal breeders are
more likely to be interested. However, doing so is a much
greater challenge for studies of natural systems experiencing
natural selection on multivariate phenotypes and environ-
mental heterogeneity, not least because it requires analysis of
individuals’ total lifetime fitness. Here, we consider only the
contribution of a single episode of selection to phenotypic
and genetic change, and hence the application of the Price
equation to analysing within-generation change. Doing so is
possible because of the convenient fact that the Price equation
applies to any time-frame, and so does not require consider-
ation of total lifetime fitness: we are not attempting a full
description of observed cross-generational changes in pheno-
type. This is not a new point, but it is one that maybe often
gets overlooked in the ambition to consider total evolutio-
nary change. We show here that it is challenging enough to
address the relatively modest aim of considering only within-
generation change owing to an episode of viability selection
of a single trait.

The process of estimating the additive genetic covariance
can also provide useful insights into the operation of selection
via a component of fitness [4,11]. We assume we are dealing
with a heritable trait, i.e. one for which there is additive genetic
variance, and we also assume (for now, but see below) that no
other genetically correlated traits are relevant for fitness. If the
trait causes variation in survival, the genes that shape the trait
will also determine survival, and so breeding values for the
trait will contribute to breeding values for survival. Alterna-
tively, the trait might have no causal effect on survival, but if
a different, exogenous variable (unrelated to individual geno-
types) affects both trait and fitness, there will be a phenotypic
covariance between the trait and fitness—but no genetic
covariance, and no evolutionary relevance because the appar-
ent selection cannot effect any genetic change [12-15]. Further,
if there is a causal effect of the trait but also an effect of the
endogenous variable, phenotypic covariances will be inflated
(assuming the same direction of effects) or deflated (if in an
opposing direction), relative to those owing just to the direct
effect of the trait itself. Thus, comparison of phenotypic
versus genetic associations between trait and fitness can give
useful conceptual insights into whether a trait has a causal
effect on fitness. In practice, any quantitative comparison
requires standardization of the covariance parameters to the
same scale, so the appropriate test is a comparison of the
respective gradients:

op(zw)  oa(zw)
@ AE (13)

where the left-hand side is the phenotypic selection gradient
Bp, the right-hand side is a ‘genetic gradient’ S [12,13,16,17]
and w is the measure of relative fitness, or fitness component.
(Note that B, is sometimes referred to as g, but we have
used subscript A for consistency with the additive genetic
(co)variance parameters.) The equivalence of the gradients
Bp=Pa is, therefore, a test of the trait being the only cause of
variation in fitness (or of variation in the focal component of



fitness). An alternative arrangement of equation (1.3) is that the
ratio of the two covariances o (z,w)/op(z,w) equals the herit-
ability of the trait, o4 (z)/0%(z). With multiple traits, if we
relax the assumption that no other genetically correlated
traits are relevant, and consider the vectors fp and 4 of pheno-
typic and genetic gradients, the equality of Bp =B, is a test of
whether all genetically correlated traits affecting fitness are
included in the analysis, i.e. of whether we have identified all
causes of fitness variation [6,12,13].

If the trait z is the sole cause of variation in fitness and so
equation (1.3) holds, the Secondary Theorem of Natural
Selection combined with a re-arrangement of (1.3) shows
that the cross-generational change in phenotypic mean R,
owing to the focal episode of selection is

R, = oalzw) = @UP(Z,ZU) =h2Sp (1.4)

o%(2)

This is the well-known ‘breeder’s equation’ [18], whereby
change in the mean of a trait is simply the product of the selec-
tion differential Sp and the trait’s heritability 1% It provides
an intuitively appealing way of describing a response to selec-
tion: the amount of change is determined first by how much
selection changes the trait within a generation (Sp), and then
by how much of that change is transferred to the next gener-
ation (h?). Conceptually, the breeder’s equation separates the
ecology from the genetics [6, p. 687]. However, for the breeder’s
equation to accurately describe cross-generational change
requires demanding assumptions. In the univariate formu-
lation, it is assumed that there are causal effects of the focal
trait on fitness (‘sole causality’ as stated above). If multiple
traits are relevant, the assumption is that all genetically corre-
lated traits with causal effects on fitness have been included
in a multivariate formulation of equation (1.4) ([19], termed
‘joint-sole causality” by [13]). Importantly, these assumptions
may be feasible for artificial selection, when animal or plant
breeders’ decisions based on values of traits, or derived selec-
tion indices, are the ‘cause’ of variance in fitness—though,
ironically, it is used less often in animal breeding than predic-
tions based on indices [20]. However, the assumptions
become much more tenuous when describing the effects of
natural selection on multivariate phenotypes in natural popu-
lations, and unsurprisingly the breeder’s equation does not
perform well in natural populations [21,22]. By contrast, the
prediction of the amount of genetic change owing to selection
using the Robertson—Price identity, the additive genetic covari-
ance, does not require such stringent assumptions. In addition,
comparison of the phenotypic and selection gradients provides
a test of sole causality of the focal trait(s) [12,13].

There is now increasing interest in applying these concepts
to studies of natural populations. Although empirical analyses
are challenging, additive genetic covariances between traits
and fitness have now been estimated in a handful of wild ver-
tebrates (for example: Soay sheep Ouvis aries [23], bighorn sheep
Owis canadensis [24], red deer Cervus elaphus [25,26], snow voles
Chionomys nivalis [27,28], great tits Parus major [29] and Atlantic
salmon Salmo salar [30]), and also in evolutionary analyses of
plant systems (e.g. morning glory Ipomoea hederacea [31]).
Such analyses are also increasingly fitted with distributions
that are appropriate for non-Gaussian fitness components
[32,33]. It is also worth emphasizing that for a genetic covari-
ance to occur obviously requires genetic variance in both the
trait and fitness [13], and while heritability of many traits in

wild populations is well established [34], there is still a surpris-
ing scarcity of estimates of additive genetic variance in fitness
in wild populations [35].

To summarize, the Robertson—Price identity can be used to
assess the potential for an episode of selection to cause pheno-
typic and genetic change in a trait within a generation, and also
to shed light on whether a trait has a causal effect on a given
component of fitness. This is arguably a more realistic ambition
than a comprehensive description of the cross-generation
dynamics of a trait. Here, we use this approach to investigate
the relationship between body size and juvenile survival in a
wild bird population. We analysed the role of a measure of
total body size, mass, in causing variation in survival in a
population of superb fairy-wrens (Malurus cyaneus) that has
been the subject of a long-term study since 1988 [36,37]. Pre-
vious work on this population has shown that nestling mass
is heritable and apparently under directional selection, with
heavier mass being associated with a higher probability of
early survival [38]. However, to date, there has been no evi-
dence of any phenotypic change in mean nestling mass [39].
Superb fairy-wrens have exceptionally high levels of extra-
pair paternity [38,40], with 85% of nests containing at least
one extra-pair offspring; this mixed paternity of broods is stat-
istically helpful for separating genetic from common
environment sources of similarity between nest-mates. We
fitted bivariate generalized ‘animal models’ to 26 years of
data and a multigenerational pedigree up to 13 generations
in order to separate the genetic and non-genetic components
of the associations between mass and juvenile survival. The
analysis allowed us to estimate the additive genetic covari-
ance between nestling mass and survival, and to compare
the phenotypic and genetic selection gradients, the equival-
ence of which would indicate that mass is the cause
(specifically, the sole cause) of variation in survival.

The study population of superb fairy-wrens is located in an
approximately 60 ha area in and around the Australian National
Botanic Gardens, Canberra, Australia (35°16 S, 149°06 E). All indi-
viduals in the population are colour-banded, and the population is
censused throughout the year at weekly intervals (if a bird is not
sighted on routine censuses, deliberate attempts are made to find
it, so sighting probabilities exceed 99%) [36]. Superb fairy-wrens
are cooperative breeders: breeding pairs may be assisted by up
to four (in one exceptional case, five) male helpers, who help the
parents in provisioning the offspring [41]. They are also multi-
brooded, with a long breeding season that extends from September
to March of the following year [42]. Owing to heavy nest predation,
a female may initiate up to eight clutches in a given year, but will
only ever raise a maximum of three broods to fledging each year.
Clutches contain one to five eggs, with a strong mode at three
eggs [43].

During the breeding season, the progress of all nests is
monitored, with nestlings weighed and banded 5-8 days post-
hatching, and date of fledging and subsequent fate of fledglings
closely monitored. Censuses at this time of year are conducted at
least three times each week [36], so death dates for each individual
can be estimated accurately. Here, we considered survival from
fledging (typically at age 13 days) to independence, defined as sur-
viving at least four weeks after fledging (or to age 41 days since
hatching). Since we were interested in individual-level associations
of phenotype with survival, this post-fledging survival—i.e. after



leaving the nest—is more relevant than survival in the nest, when
mortality is almost entirely owing to predation of the entire brood.
This period is also after the date on which nestlings will have been
banded and weighed. We used an upper bound of four weeks post
fledging as the youngest possible age of independence. Most
young are still being provisioned at this age, but the earliest
known dispersal in our study happened at four weeks post fled-
ging: this cut-off point, therefore, avoids any chance of dispersal
being confused with mortality. Blood samples were taken from
nestlings at banding, and used for parentage assignment using
microsatellite genotypes (see methods in [38]). From this parentage
assignment, we constructed a multigenerational pedigree with a
maximum lineage length of 13 generations. Summary statistics
for the traits and pedigree are given in electronic supplementary
material, table S1, but in brief: we used data from 26 breeding sea-
sons from 1988 to 2013, for a total of 3808 nestlings from 1472 nests.

We fitted a bivariate generalized linear mixed model using a Baye-
sian framework implemented in the R package MCMCglmm [32],
with response variables of nestling mass and survival from
fledging to independence. We used an animal model approach
[44] incorporating the pedigree information to partition (co)vari-
ances into additive genetic and several non-genetic components.
For both traits, we fitted a fixed effect of nestling sex (known because
all nestlings were genotyped using the CHD test [45]) and several
other fixed effects to account for other variables that may affect
either mass or survival: the number of helpers in the group (as a
three-level factor: 0, 1 and 2+; where the 2+ level consisted
mainly of 2 helpers [39]; brood size (the number of nestlings in a
given brood, as a covariate ranging from 1 to 5), to account for
potential variation in the amount of care provided to individual
nestlings; and the pedigree inbreeding coefficient of each individual,
to account for inbreeding depression [38]. We also tested for
differences in performance between offspring of extra-pair versus
within-pair copulations (following [46]), by fitting an additional
two-level factor of whether or not the nestling was the offspring
of the dominant male on the territory. In addition, for nestling
mass, we fitted nestling age in days, ranging from 5 to 8, and
fitted as a covariate with a quadratic function to represent growth
over the nestling period. Finally, as in previous analyses of nestling
mass [38,39], we fitted a two-level factor to correct for a change in
field protocol: prior to 1992, chicks were weighed throughout the
day and so were on average heavier than in later cohorts, which
were always weighed in the early morning (‘Pre1992’ factor).

The model contained random effects of an additive genetic effect,
with covariance structure determined by the pedigree, to estimate
the additive genetic (co)variances [44], and nest identity to account
for covariance owing to the common environments shared by
offspring in the same brood [47]. We also modelled two forms of
temporal variation: inter-annual variation with a 26-level factor
of cohort (1988-2013: the ‘1988 cohort incorporates nestlings
from September 1988 to March 1989, etc.) and intra-annual
variation within a breeding season with a multi-level factor of
hatch-date fortnight (split into 12 two-week intervals, between 23
September and 15 March). We explored fitting a maternal effect,
specified by the identity of the mother, to test for consistent
effects—both genetic and non-genetic—of individual mothers
across all nests they produced. However, in univariate models of
each trait (with the same random effects as specified above),
there was no evidence of any maternal effect, nor of any change
in the estimate of additive genetic variance when including a
maternal effect (electronic supplementary material, table S2), indi-
cating that common environment effects are driven by differences
between individual nests more than between individual mothers.
We also had trouble with bivariate models including a maternal
effect converging, and therefore did not include a maternal effect
in the bivariate models presented here.

The main bivariate model estimated components of variance
and covariance between mass and survival for the random
effects of nest, cohort, fortnight and additive genetic effects.
For each sample of the posterior distribution, we estimated the
corresponding correlation between traits for each random effect
by dividing the covariance term by the square root of the product
of the respective variances: this gave, for example, the correlation
between cohort effects on each trait. Similarly, we estimated the
total phenotypic variance for each trait (after correcting for
fixed effects) as the sum of all the variance components, and
the total phenotypic covariance as the sum of all covariances.
Finally, we estimated total ‘environmental’ (i.e. non-genetic) var-
iances and covariances, defined as the respective phenotypic
(co)variances minus the additive genetic (co)variances.

All random effects were fitted for both response traits using
‘unstructured’ (us) covariance matrices, and the residual variance
was set using rcov with an unstructured covariance matrix.
Models were run for 5.2 x 10° iterations, with a burn-in of 1.2 x
10°, thinning interval of 2000 and parameter expanded priors;
code for the MCMCglmm model is provided in the electronic sup-
plementary material. The effective sample sizes for specific
parameters varied owing to auto-correlation, but we ensured
that they were always above 1000. For each parameter, we report
means of the posterior distribution and 95% credible intervals
(CIs), which are defined as the shortest interval of the posterior dis-
tribution that contained 95% of the distribution. We considered
there to be statistical support for a fixed effect or covariance of
random effects if the 95% Cls did not span 0 and, for fixed effects,
if pMCMC (the proportion of the posterior distribution that was
smaller than 0) was <0.05.

This main model (model I) fitted nestling mass with Gaussian
errors, whereas survival was treated as a binary variable fitted
with MCMCglmm’s ‘threshold” distribution, a probit link func-
tion and residual variance was fixed to 1 following standard
MCMCgImm convention [32]; note that although the residual var-
iance is fixed to 1, the residual covariance with nestling mass is still
estimable. All parameter estimates for survival, including the var-
iance and covariance parameters, are, therefore, on the probit
latent scale. While this formulation is necessary for a model with
an appropriate statistical distribution, it has implications for
interpretation of the estimates of the covariance components, as
the resulting parameters involve latent-scale fitness and so are
not directly comparable to typical selection differentials or gradi-
ents. In the case of a fitness component with a log-normal
distribution (which might, for example, be modelled with a
Poisson distribution with log link function), there is a very con-
venient equivalence of estimates of (co)variance of absolute
fitness on the latent-scale with the value of (co)variance of relative
fitness on the data-scale [48,49], and so estimates from a log-
normal GLMM can be used as standardized coefficients. Unfortu-
nately, this correspondence does not hold for either probit or logit
link functions (M. Morrissey 2019, personal communication). To
generate the regression coefficients required to estimate the gradi-
ents considered in equation (1.3) above, we therefore fitted a
second bivariate animal model (model II) of standardized nestling
mass and relative survival, with both variables modelled with
Gaussian error distributions. The covariances from this model esti-
mate the linear differentials required for equation (1.3): note that
although the statistical model does not use the appropriate error
distribution for survival, the linear differential is the appropriate
parameter that quantifies the change in the mean of the trait
owing to selection [2,50].

In order to generate standardized selection gradients in model
II, each individual’s relative survival was calculated by dividing its
observed survival (0 or 1) by the mean survival rate in its cohort, so
that every cohort would have a mean relative survival of 1. We also
standardized nestling mass to unit variance so that the resulting
parameters in model II were standardized selection coefficients



(note that in model I, mass is not standardized). For each sample of
the posterior distribution for model II, we calculated the phenoty-
pic selection gradient Bp (the left-hand side of equation (1.3)) by
dividing the total phenotypic covariance by the total phenotypic
variance in mass (defined as above). We also calculated the ‘genetic
gradient’ B4 defined as the additive genetic covariance divided by
the genetic variance, and finally, for completeness, the ‘environ-
mental’ gradient Bg, where the environmental (co)variance was
the sum of all (co)variances except the additive genetic (see also
[25,31]). This gave posterior distributions of the estimates of the
three gradients, fp, B and Sg.

As a final point, inclusion of the fixed effects made little differ-
ence to the estimates of the (co)variance components in which we
were primarily interested, but for comparison [51] we also present
in the electronic supplementary material, table S3 a version of
model I with the same random effects as above, but with only
the essential fixed effects of sex, age and field-protocol-change.
We also estimated selection gradients from the equivalent version
of model II (i.e. without additional fixed effects), which again
were very similar to those from the model with all fixed effects
(electronic supplementary material, table S3 legend).

Overall, 60% of female and 61% of male superb fairy-wren
juveniles survived the four-week period from fledging to inde-
pendence. Rates of survival increased with mass in both sexes
(figure 1). In the bivariate model I of nestling mass and survi-
val, there was a positive total phenotypic covariance between
the two traits of Covp=0.14 (0.05, 0.26 95% CI). Nestling
mass also increased with age at measurement and with more
helpers at the nest, and was higher for males relative to females,
whereas it decreased with increasing brood size and with
higher inbreeding coefficient. Survival was higher in nests
with two or more helpers (table 1).

There was additive genetic variance for both nestling mass
(VA =0.09 (0.06, 0.13 CI) and survival (V =0.39 (0.07, 0.84 CI);
table 1), explaining 17% (11, 24% CI) of the variance in mass
(i.e. the heritability) and 10% (3, 18% CI) of the (latent-scale)
variance in survival (electronic supplementary material,
figure S1). There was also considerable variance between
nests, accounting for 43% (39, 47% CI) of the variance in
mass and 42% (32, 51% CI) of the variance in survival
(table 1). Hatch-date contributed 2% (0.3, 5% CI) of the variance
in nestling mass and 18% (6, 34% CI) of the variance in survi-
val, whereas cohort contributed 2% (0, 3% CI) of the variance
in mass and 4% (1, 8% CI) of the variance in survival.

The posterior means for the covariances and correlations of
the different random effects were all positive, with the excep-
tion of those between the additive genetic effects (table 1).
The additive genetic covariance was slightly negative, but
with large CIs (Cov = —0.02 (-0.09, 0.05 CI); figure 2).

The total environmental covariance between mass and
survival was positive (Covg=0.16 (0.03, 0.28 CI); figure 2).
For both nest and residual effects, the covariances were posi-
tive, but with CIs that overlapped zero. The associations
between the two temporal terms, cohort and hatch-date,
were also both positive, but their statistical support was com-
plex. For the covariances, credible intervals for both terms
just overlapped zero (table 1), but only 1.3% of the posterior
distribution for hatch-date covariance and 3.4% of the cohort
covariance was negative. The temporal terms had the stron-
gest correlations: cohort correlation=0.56 (0.03, 0.96 CI),
hatch-date correlation=0.70 (0.23, 1.00 CI; table 1), and
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Figure 1. The relationship between nestling mass (binned into approximately
1 g categories) and survival from fledging to independence (12—41 days). The
sample sizes of individuals in each group are given within the bars. (Online
version in colour.)

their CIs did not overlap zero. We consider the slight mis-
match between the level of statistical support for the
covariances versus the correlations in §4.

We then used a bivariate model with standardized mass and
relative survival fitted as a Gaussian variable (model II) to esti-
mate standardized selection gradients and test for the
consistency of the phenotypic selection and genetic gradients.
The standardized phenotypic selection gradient was Sp = 0.108
(0.036, 0.187 CI), whereas the genetic gradient was 4 = —0.025
(=0.19, 0.107 CI). The uncertainty on S5 was, therefore, sufficient
that we cannot confidently conclude that the phenotypic and
genetic gradients (from equation (1.3)) were different, but we
note that each posterior mean falls outside the CI of the other par-
ameter, especially the posterior mean of B4 (figure 3a). The
difference between the two estimates (Bp — 8, ), estimated for
each sample of the posterior distribution, had a posterior mean
of 0.133 (-0.017, 0.316 CI; figure 3b), and fp was greater than
Ba in 96.1% of the samples. As a final test (following [17]), we
compared the genetic gradient 84 with the environmental gradi-
ent fg, which had posterior mean 0.137 (0.050, 0.239 CI). The
mean difference (Bg — B,) was 0.161 (-0.030, 0.364) and was
also positive for 96.1% of its distribution. Overall, while there
was clear evidence of positive phenotypic and environmental
gradients, in contrast to the slightly negative genetic gradient,
the uncertainty on the parameters was sulfficient that CIs for
the differences still just overlapped zero (figure 3).

This paper is part of a Special Issue on the Price equation. Using
a quantitative genetic approach, we have focussed on the first
term of the Price equation, the Robertson—Price identity, and
its application to describing the effect of selection in instigating
genetic change. Estimation of this covariance provides a useful
test of the impact of selection on a trait. It is highly unlikely that
either of the two authors of the Robertson—Price identity, Alan
Robertson and George Price, would ever have imagined that
their quantitative genetic ‘algebra of evolution’ [2] would one
day be applied to data from a small Australian songbird
known for its bright blue plumage and high levels of infidelity.
However, we hope to have shown here how the process of



Table 1. Model of the components of variance and covariance between nestling mass and survival from fledging to independence. The fixed effects were
nestling sex, age at measurement (in days, fitted as a quadratic), the effect of the change in weighing protocol in 1992, brood size, the number of helpers in
the group, the nestling’s inbreeding coefficient, and whether or not it was the result of extra-pair paternity (EP, versus within-pair WP). The model was fitted
in MCMCglmm with a Gaussian distribution for nestling mass and a threshold distribution for survival. The model estimates are based on posterior means, 95%
credible intervals (Cls) are given in brackets, and p-values are based on pMCMC. Parameter estimates for survival terms are on the logit scale. The analysis is of

3808 nestlings in 1472 nests across 26 years (see electronic supplementary material, table S1 for details of sample sizes). ltalics indicate pMCMC < 0.05.

nestling mass

fixed effects estimate (95% Cl)

intercept —3.35 (—6.00, —0.94)
1992 (1992+, pre-1992)

pre1992 AL o5 (033., o
nestling age 2.06 (1.37, 2.81)

nestling age’ 0,08 (—0.13, —0.03)

sex (female, male)
o
brood size
hélpers ‘(0, 1‘, 2+)
1 helper

—0.05 (—0.09, f0.0]) ‘

0.08 (001, 0.15)
inbreeding coefficient
within-pair status (EP, WP)

random effects variance—covariance—correlation matrices (95% Cl)

Wwp 0.004 (—0.04, 0.05)
mass

nest ID v v

survival 0.03 (—0.03, 0.09)

mass 0.01 (0.002. 0.03)
e e (_001 015)
cohort

sunvival 0.02 (—0.001, 0.05)

additive genetic effet
mass 0.09 (0.06, 0.13)

svival —~0.02 (~0.09,0.05)

residual variance

019017, 021)

mass
survival 0.05 (—0.003,0.10)
sample size

estimating the Robertson-Price covariance can provide both
evolutionary and ecological insights into the dynamics of a
natural system. Below, we first consider the broader evolution-
ary issues that arise from the quantitative genetic analyses, and
then discuss the results concerning sources of variation in mor-
phology and fitness in the superb fairy-wren study population.

The focal phenotypic trait here, nestling mass, constitutes
yet another example of a heritable trait apparently under
positive directional selection, for which the breeder’s equation
would therefore predict a cross-generation response to

015 (0.”., 0.1.9) e

3B o

survival from fledging to independence

estimate (95% Cl)

0.005 0.77 (0.15, 1.38) 0.013
pry
<001
<0.001
e o B Bl T v
0022 » ‘ ,_0‘,10 (f0.23, 0.04)‘ Q.138 »
o0 019(-00404) 0109
0.002 0.27 (0.01, 0.53) 0.037
0028 404 (1360, 5.48) 043
0.855 0.09 (—0.05, 0.24) 0.222

survival

e

100,200

070023, 100)
0.71 (0.17, 1.54)

Suneoesy

—0.09 (—0.53, 0.28)
0.39 (0.07, 0.84)

©011(=001,022)
o edbd00
3808

selection [18]. However, there has been no indication of any
phenotypic change in mean nestling mass across the study
period [39]. This could be for many reasons, such as con-
founding effects of phenotypic plasticity in response to any
environmental change, or countering selection acting via
other components of fitness [21]. However, comparison of the
phenotypic versus genetic gradients for survival on mass pro-
vides a test of the breeder’s equation assumption that all traits
with causal effects on fitness are incorporated in our model.
Our estimates of the additive genetic covariance and the
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Figure 2. Posterior distributions of the estimates of components of covari-
ance between nestling mass and juvenile survival in superb fairy-wrens
(from model I, table 1). Red diagonal hashed lines indicate the additive gen-
etic covariance, green diagonal lines indicate the environmental (non-genetic)
covariance (defined as in §2) and blue horizontal lines indicate the pheno-
typic covariance. Survival was modelled as a threshold trait with a probit link
function, so the parameter estimates are on the latent scale. Despite the posi-
tive phenotypic covariance and additive genetic variance for both traits
(electronic supplementary material, figure S1), there was little support for
positive additive genetic covariance.

corresponding genetic gradient have large Cls, but overall
there is little support for the breeder’s equation’s assumption
of the equality of phenotypic versus genetic gradients (figure 3).
Under this assumption, breeding values for mass would con-
tribute to breeding values for survival, generating a genetic
covariance between the two [13], which we do not observe.
Rather than a causal relationship between mass and survi-
val, our results suggest that other confounding sources of
variance are generating covariance between mass and survival
in this population. In particular, temporal variation may be
contributing to the phenotypic association: the strongest corre-
lations between mass and survival were those owing to the
effects of differences between hatch-date intervals and cohorts.
There was also weak support for a positive correlation across
nests, suggesting that nests with heavier nestlings had higher
survival rates after leaving the nest (table 1). This may, there-
fore, be a situation in which confounding effects of extrinsic
variables result in an overall phenotypic covariance between
a trait and fitness, but there is no potential for any evolutionary
response because the covariance lacks a genetic component
(figure 4). Temporal variation would thus be a particular case
of external extrinsic conditions generating the appearance of
selection that can have no evolutionary relevance [12,15,52].
We considered here the effects of a single episode of selec-
tion, acting via differential survival over a period of time in
early life. This is a short period, but it is important, as average
survival was only 60-61%: the covariance of relative survival of
this period with relative lifetime breeding success was 0.56
(where lifetime breeding success is the total number of off-
spring produced, which will be zero for those that died as
juveniles). We have estimated just the first term of the full
Price equation, the additive genetic covariance (or Robert-
son-Price identity), but because we are considering the
change in an entity (genetic breeding value for nestling mass
prior to 9 days) that cannot change during the period of selec-
tion (age 1341 days), our implementation is effectively of the
full Price equation for the change caused by this episode of
selection. Put differently, we are not making assumptions

about the second term of the Price equation being negligible,

but rather we are only considering a time interval for which,
by definition, the second term is zero. As such, the application
of the Price equation to describe within-generation change is
arguably where it can most realistically be used for data from
natural populations. We are not aiming for comprehensive rep-
resentation of the likely change in genetic (let alone
phenotypic) values from one generation to the next—but
rather for a measure of how much change there will have
been owing to one episode of selection that would ultimately
contribute to cross-generation change. Fairy-wrens will face
numerous other selection pressures in their lives that will
shape overall variation in fitness. Nevertheless, body size is
arguably the most well-studied trait as a target of selection
(for example, constituting 20% of more than 5000 estimates
of selection reviewed in [53]), and juvenile survival possibly
the most easily measured component of fitness, so the example
may be relevant to other studies. It may also be that in other
species and populations there are clearer reasons for causality
to underlie any correlation between mass and survival. For
example, in many other wild animal populations (if not here),
starvation may be the most likely cause of juvenile mortality,
and so assumptions of causal associations between size and
survival may be more plausible. Thus the extent to which our
results hold across other systems will be interesting to see. It is
also possible that changing climates alter selection on mor-
phology in wild populations—although, notably, two recent
meta-analyses have not found evidence of selection coefficients
on body size changing with either temperature or time [54,55].
On the statistical front, our study illustrates several points
that will be relevant for similar analyses. First, we modelled
the binary trait of survival (survived or did not survive, yes/
no) as a threshold distribution, with a link function of a
probit transformation [56]. The covariance estimated in the
model is, therefore, the covariance between the data-scale nest-
ling mass values and the latent-scale survival, and so is not
readily interpretable as a selection differential in the standard
sense. Similar GLMMs that use a log-normal model (such as
for a Poisson distribution) have the useful characteristic that
latent-scale variances and covariances of absolute fitness are
equivalent to data-scale variances and covariances with rela-
tive fitness [48]. Unfortunately, this correspondence does not
apply for models using probit or logit links. We therefore esti-
mated selection differentials in separate models assuming
Gaussian errors with relative fitness and an identity link func-
tion. An alternative approach would be the transformation of
the GLMM parameters, for example using QGglmm [33], to
derive data-scale estimates of the covariances with survival,
which could then be transformed to give covariances with
relative survival. Second, on a subtle point regarding
MCMCglmm output, the 95% ClIs for the covariances for the
temporal components just overlapped zero, but those for the
correlations did not (table 1). We do not want to put too
much weight on an apparent marginal statistical significance
of one parameter and not another (see e.g. arguments in [57]),
but this potentially puzzling contrast is probably the result of
the exact nature of MCMCglmm’s CIs, which are the shortest
interval that contains 95% of the posterior distribution [32]. If
distributions are asymmetric, the CI will favour the ‘fatter’-
tailed end of the distribution, so the difference here probably
reflects a difference in the directions of skew of the posterior
distributions of the covariance versus the correlation statistics
(shown in electronic supplementary material, figure S2).
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Figure 3. Posterior distributions of the estimates of the selection gradients for nestling mass. (a) Genetic and non-genetic gradients: red diagonal hashed lines
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Figure 4. A phenotypic trait in an individual may be determined by a range
of factors, including the individual's genotype and environmental variation;
these effects are depicted by single-headed arrows. The diagram represents
a scenario whereby both the trait of interest (such as body size) and a com-
ponent of fitness change in a correlated manner owing to temporal variation
(both within or between years), generating a statistical correlation between
trait and fitness depicted by the double-headed purple arrow. The net result
is a phenotypic covariance between trait and fitness, and hence the appear-
ance of selection, but no potential for any evolutionary response. After
[14,15], but considering, in particular, the confounding effects of temporal
variation. (Online version in colour.)

Finally, whilst we very much want to encourage other simi-
lar analyses, it is worth noting that MCMC analyses such as
those presented here are computationally demanding. Our
main bivariate model took three weeks to run on a central
mainframe computer, for a dataset that is large but by no
means unusual for a long-term study; it fell over completely
when we tried to incorporate a sixth random effect. Whether
there is sufficient statistical power for reasonable estimates of
genetic covariances remains a perennial problem for studies
of wild populations [58], and our conclusions here are
obviously constrained by the substantial uncertainty on the

estimates of additive genetic covariance and genetic gradient.
Nevertheless, although estimates from other wild populations
are scarce [23,25-27,29], there has been clear support for non-
zero additive genetic covariance in at least two other cases
(body size in snow voles [27] and breeding time in red deer
[26]), so its detection in the wild is possible.

Our analyses also described other factors relevant to early
life performance in juvenile superb fairy-wrens, with the
results matching previous studies on this population showing
effects of age, sex and social environment (table 1; [38,39]). We
also tested for differences in either mass or survival between
within-pair versus extra-pair offspring, but found no effect
(table 1). However, despite the statistical support for the
majority of the fixed effects included in the model, they did
not account for a large amount of the total variance: an equiv-
alent model to that in table 1 but with only the ‘baseline’ fixed
effects of sex, age and protocol had very similar variance
and covariance components of the random effects (electronic
supplementary material, table S3). There was however sub-
stantial variance between nests for both mass and survival
(table 1), presumably reflecting unmeasured characteristics of
the territory and food resources, or the nest itself (its location,
how inconspicuous it is, etc.). The variance between nests
may also reflect variation associated with the mother, the domi-
nant male on the territory and the identity of the helpers
attending the nest, although there was little evidence of con-
sistent differences between mothers in their effects across
breeding seasons and years (i.e. of consistent ‘maternal effects’,
electronic supplementary material, table 52).

A lack of causality underlying the association between
fairy-wren nestling mass and survival in the post-fledging
period makes biological sense given that the most likely
cause of mortality at this stage is predation of young fledglings,
and it is not obvious why this should vary with mass. It is more
plausible that predation and mass both vary between different
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times of the breeding season and between different years: times
of higher predation may coincide with times of lower avail-
ability of fairy-wren food and hence lower mass. Variance
owing to hatch-date (modelled here as the different fortnights
through the breeding season) explained 18% of the variance
in survival to independence, presumably owing to the effects
of changing ecological conditions through the long fairy-
wren breeding season. In particular, predation rates are likely
to be highest during periods in which the predators themselves
are raising young. Many of the nests in the study population
are raided by pied currawongs (Strepera graculina), which will
take nestlings and juveniles of other bird species to feed
their young [59]; this predation may be highest during the
earlier stages of the fairy-wren breeding season, which may
be when abundance of the invertebrates on which superb
fairy-wrens feed is lower. More detailed exploration of
the causes of this temporal covariation will therefore be
interesting, including extension of the analyses to model
auto-correlation between adjacent years or hatching periods.

Quantitative genetic analyses in the form of multivariate
animal models can be used to estimate the additive genetic
covariance and other potential sources of covariance between
traits and components of fitness. In particular, estimation of
the Robertson—Price identity provides a test of whether a par-
ticular episode of selection will cause genetic change in a
trait, and comparison of the corresponding phenotypic and
genetic gradients indicates whether the focal trait is the sole
cause of variation in fitness. In our superb fairy-wren study

1. Price G. 1970 Selection and covariance. Nature 227,
520-521. (doi:10.1038/227520a0) Press.

pp. 5-16. New York, NY: Syracuse University 16.

population, nestling mass was heritable and heavier individ- [ 9 |

uals had a higher probability of survival, but the estimation
of the Robertson-Price identity indicated that the selection
would not generate any change in mean breeding value in
the population. The positive environmental covariance
between mass and survival was probably owing, at least in
part, to correlated inter- and intra-annual temporal variation.
In studies of wild populations, application of the Price
equation—or even part of it—and tests of the equivalence
of selection gradients may be challenging, but the process
can offer useful insights into the causes and consequences
of key episodes of natural selection in wild populations.

Statistical code and supporting data are provided at
https://dx.doi.org/10.5061/dryad.3ffbg79dq.
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