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Abstract. Two contrasting approaches to the analysis of population dynamics are
currently popular: demographic approaches where the associations between demographic
rates and statistics summarizing the population dynamics are identified; and time series
approaches where the associations between population dynamics, population density, and
environmental covariates are investigated. In this paper, we develop an approach to combine
these methods and apply it to detailed data from Soay sheep (Ovis aries). We examine how
density dependence and climate contribute to fluctuations in population size via age- and sex-
specific demographic rates, and how fluctuations in demographic structure influence
population dynamics. Density dependence contributes most, followed by climatic variation,
age structure fluctuations and interactions between density and climate. We then simplify the
density-dependent, stochastic, age-structured demographic model and derive a new
phenomenological time series which captures the dynamics better than previously selected
functions. The simple method we develop has potential to provide substantial insight into the
relative contributions of population and individual-level processes to the dynamics of
populations in stochastic environments.

Key words: age-structure fluctuations; nonlinear dynamics; North Atlantic Oscillation; Ovis aries; Soay
sheep; time series analysis.

INTRODUCTION

Ecologists use many methods to gain insight into the

processes that generate population dynamics (Tuljapur-

kar 1990, Royama 1992, Caswell 2001, Lande et al.

2003, Turchin 2003). These methods can be grouped

broadly into two categories. First, demographic analyses

where statistics describing the dynamics of a population

are decomposed into contributions from age or stage-

class specific demographic rates. For example, the

demographic approach can be used to assess the

contribution of a demographic rate like adult survival

to mean population growth (Caswell 2001), or the

contribution of variation in a demographic rate to

population growth (Tuljapurkar et al. 2003, Engen et al.

2005, 2007, Haridas and Tuljapurkar 2005). These

approaches rarely attempt to decompose population

dynamics into contributions from processes like density

dependence and environmental stochasticity operating

via variation in demographic rates (but see Lande et al.

[2006] for an exception). We define any model that

explicitly incorporates parameters for birth and death

terms as a demographic model. The second category

consists of time series approaches where birth, death and

demographic structure is often ignored but where the

dynamics are decomposed into contributions from

processes like density dependence and environmental

or demographic stochasticity (Royama 1992, Turchin

and Taylor 1992, Ellner and Turchin 1995, Sæther et al.

2002a, b, Stenseth et al. 2004). These analyses provide

insight by estimating the functional form for the density

dependence and by characterizing the expected deter-

ministic dynamics in the absence of stochasticity (May

1976). A popular current choice for the functional form

is the h-logistic model (Sæther et al. 2002b, Sibly et al.

2005, Brook and Bradshaw 2006). We define population

models that do not explicitly contain birth and death

terms as phenomenological time series models. Both

approaches have generated substantial theoretical and

empirical interest, but attempts to combine the ap-

proaches are rare (but see Reuman et al. 2006).

However, in order to develop an integrated population

ecology that combines the ecological and demographic

processes that generate dynamics it is necessary to

combine methods. In this paper we present an empirical

approach that unifies the demographic and time series

approaches.
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Demographers have developed a range of methods

that empirical ecologists have begun to use to decom-

pose the asymptotic population growth, ka, the long-run
stochastic growth rate, ks, and the variance in popula-

tion growth, r2(ka), into contributions from the mean

and variance in age- and stage-specific survival and

recruitment rates, and the covariance between them

(Tuljapurkar 1990, Brault and Caswell 1993, Gaillard et

al. 2000, Caswell 2001, Tuljapurkar et al. 2003, Coulson

et al. 2005, Engen et al. 2005, Haridas and Tuljapurkar

2005). Related approaches include the decomposition of

population growth over a time step, wt, into contribu-

tions from each individual within the population or into

contributions from the distribution of quantitative traits

and genotypes (Coulson et al. 2006, Pelletier et al. 2007).

These demographic decompositions have proved to be

useful in devising management strategies and in

characterizing fluctuating selection in stochastic envi-

ronments, but they typically do not address many of the

questions that population ecologists are interested in; for

example, how important is density dependence com-

pared with fluctuations in the environment in determin-

ing patterns of population dynamics?

Approaches that attempt to identify the role of

density dependence in influencing population dynamics

typically involve de-constructing time series of popula-

tion counts into a functional form for the density

dependence, or the deterministic skeleton, before char-

acterizing variation around this skeleton (Grenfell et al.

1998, Sæther et al. 2000, 2002c, Turchin 2003). These

skeletons may include only direct density dependence, or

direct plus delayed density dependence. Ecologists have

a tendency to select functional forms that can generate a

range of exciting dynamical patterns including cycles

and chaos. One reason for this is that insect populations

kept in constant environments in the laboratory can

exhibit complex dynamics (Costantino et al. 1997,

Bjornstad et al. 1998). However, whether such deter-

ministic dynamics are really widespread in the labora-

tory or the field is still unclear and the subject of debate.

When analyzing time series of counts the appropriate

deterministic skeleton is usually selected as a matter of

personal taste, regardless of its appropriateness for the

system, and unexplained variation is mopped up by

environmental drivers including weather (e.g., Berryman

and Lima 2006). There is also mounting evidence that

the deterministic skeleton and environmental variation

can interact (Coulson et al. 2004, Boyce et al. 2006),

although time series approaches that attempt to identify

such interactions are rare (Stenseth et al. 2004).

Theoretical and empirical time series deconstructions

have proved to be useful in demonstrating that density

dependence and environmental variation both play

major roles in generating dynamical patterns. However,

the choice of functional form can be contentious

(Jacobson et al. 2006, Lima and Berryman 2006, Yoccoz

and Gaillard 2006) and multiple combinations of

functional form and environmental variation can

generate similar patterns (Dennis et al. 2003, Ellner

and Turchin 2005). Because of this the choice of

functional form is to some extent arbitrary, although

some general guidelines do exist. For example, if the

dynamics are believed to be caused by trophic interac-

tions then delayed density dependence should be

incorporated in either a linear (Royama 1992) or

nonlinear (Turchin 2003) framework. Despite these

guidelines the arbitrary nature of the way that functional

forms are chosen is a serious problem since different

functional forms can suggest different conservation or

management strategies. Needless to say, getting it right

matters.

It is our opinion that there is considerable merit in

both the demographic and phenomenological time series

approaches. Because of this it would be helpful to

decompose population dynamics into ecological pro-

cesses using age-structured demographic data. A second

reason to link the two approaches is that there is now a

substantial literature in which ecological covariates have

been fitted into models which identify causes of temporal

variation in specific demographic rates (Lebreton et al.

1992, Skalski et al. 1993, Barker et al. 2002, Reed et al.

2003). For example, the growth in the use of mark–

recapture methods to analyze survival means there is a

multitude of published cases with convincing evidence

that density dependence, environmental stochasticity,

and phenotypic variation all influence survival (Skalski

et al. 1993, Luiselli et al. 1996, Gaillard et al. 1997,

Jorgenson et al. 1997, Loison and Langvatn 1998, Hall

et al. 2001). Until such analyses can easily be incorpo-

rated into demographic models it will be challenging to

identify the dynamical consequences of these processes

via a specific demographic rate. In this paper we develop

a way to do this and apply it to a population of Soay

sheep (Ovis aries). First, we describe and statistically

characterize the time series of the Soay sheep using up-

to-date data; second we describe previously published

models; third we develop new theory to estimate the

functional form for the density dependence using

demographic data; and finally we use our approach to

decompose the population dynamics into contributions

from different ecological processes. A key assumption of

our approach is that because the dynamics of any

population are a result of variation in birth and death

rates then, whenever possible, the construction of a

population model should start by analyzing these

fundamental biological processes.

THE DATA

The population of Soay sheep on the Island of Hirta

in the St. Kilda archipelago, Scotland, has been counted

annually since 1955 with counts occurring during the

summer (Grenfell et al. 1998). The population is food

limited and there are no vertebrate herbivores competing

with the sheep (Crawley et al. 2004). Data between 1985

and the present have been collected using the same

counting protocol and are good estimates of population
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size (Clutton-Brock and Pemberton 2004). Between 1962

and 1984 the quality of the population estimates is

unknown, and Clutton-Brock and Pemberton (2004)

recommended that these data should be excluded from

analyses of population dynamics. In this paper, we use

the most up-to-date counts (1985–2006), but when we

compare our results with earlier models, we use data

from the period used in those publications. The time

series we aim to understand is displayed in Fig. 1A.

Over the period 1985–2006 the population has shown

13 year-on-year increases and eight declines. The

average population increase (i.e., positive values of d ¼
ln(Ntþ1/Nt)), where N is population size and t is time,

was 0.327, while the average population decline was

�0.490. Note, we define observed population growth as

the variables w ¼ Ntþ1/Nt and d ¼ ln(w). We define the

parameters used to describe predictions of population

growth as k and r ¼ ln(k).
The density transition ‘‘up, up, down’’ over three

years has been the most frequently observed temporal

pattern (five cases), with ‘‘up, down’’ as the only other

pattern observed (two cases). We have never observed

two declines in a row, nor have we ever observed three

successive increases. Thus, if we have observed two

successive increases in the whole island count, it is odds-

on for the next transition to be a decline, whereas if we

have observed one increase since the last decline, then it

is five to two in favor of an increase in population size in

the next year.

The population has shown a significant upward trend

over this period (Fig. 1A), with an average 33 extra

sheep per year at the whole-island count in August (n¼
22 years, P¼ 0.0113; choice of start or end date for the

series is not influential, and the upward trend is

significant if counts with up to three of the years are

trimmed from either end of the full time series). There is

very clear evidence of density dependence in the time

series (Fig. 1B), with detrended population differences

showing significant negative partial autocorrelations at

lags of 1 and 2 years (Fig. 1C). There is no significant

evidence of regular cycles in the logged linearly

detrended counts (Fig. 1D; Diggle 1990). The best-fit

time series model to logged linearly detrended counts is

of order three (autoregression estimates with standard

errors ¼�0.166 [0.185], �0.196 [0.1832], 0.457 [0.1828])

with no evidence for a moving-average term, nor any

FIG. 1. Dynamics of the Soay sheep (Ovis aries) population on the island of Hirta, Scotland. (A) Time series of the whole-island
sheep counts (N ) between 1985 and 2006. (B) Evidence of density dependence from a plot of d ¼ ln(w) ¼ Ntþ1/Nt, where w is
population growth. (C) The partial autocorrelation function (PACF) of the log-transformed linearly detrended whole-island counts
in panel (A). (D) The autocorrelation function (ACF) of the linearly detrended values of d. The dashed horizontal lines in panels
(C) and (D) represent statistical significance at a , 0.05.
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evidence of non-stationarity (differencing does not

improve the model). This model explains 36.2% of the

variance.

The relatively poor performance of these simple

autoregressive models in explaining substantial amounts

of variation in the time series (Coulson et al. 2000) has

led to various other models being fitted in an attempt to

increase the variation explained. The approaches taken

have been to include environmental variables other than

density and the selection of alternative functional forms

for the density dependence. We now describe three

previously published models of the time series. We also

attempt to provide the logic that led to the identification

of each functional form for the density dependence.

TIME SERIES MODELS FIT TO THE SOAY SHEEP DATA

The first stochastic model of the Soay sheep popula-

tion was developed by Grenfell et al. (1998). They

examined a plot of ln(Ntþ1) against ln(Nt) and noted

considerable heteroscedasticity in the relationship. They

consequently felt that a single function to describe the

form of the density dependence was not appropriate and

fitted a self-exciting threshold autoregressive regime

(SETAR) model of the form

xtþ1 ¼ a1 þ b1xt þ e1 xt � C

xtþ1 ¼ a2 þ e2 xt . C
ð1Þ

where xt is the natural log of population size, N, in year t

and e2 . e1. They were able to explain some of the high-

density residual variation, e2, with the number of days of

winter storms.

Following the observation by Coulson et al. (2001)

that significant interactions between density dependence

and climate influence demographic rates such that bad

weather at low population densities has little impact on

over-winter mortality, but bad weather at high popula-

tion densities can lead to severe crashes, Stenseth et al.

(2004) adapted the approach of Grenfell et al. (1998) to

include an interaction between density and climate.

Specifically, they agreed with Grenfell et al. (1998) that

there is no evidence for density dependence on

population growth at low density, but that at high

density, climate and density interact to influence

population growth. They constructed a continuous

threshold model with separate linear regimes above

and below a threshold, except that the slope of the linear

regime above the threshold was determined by the

North Atlantic Oscillation (NAO). The r2 values

between observed and predicted population size from

the models of Grenfell et al. (1998) and Stenseth et al.

(2004) were both approximately 0.2.

Berryman and Lima (2006) felt that there was little

theoretical justification for the inclusion of a threshold

in the functional forms of Grenfell et al. (1998) and

Stenseth et al. (2004). Instead, they modeled the

dynamics with a modified logistic (often referred to as

the h-logistic) of the following form:

Ntþ1 ¼ Nt exp Rm 1� Nt

K

� �Q
" #

ð2Þ

where Rm is the maximum growth rate of the

population, K is the carrying capacity, and Q determines

the curvature of the functional form (Fig. 2). Berryman

and Lima (2006) proposed two models: one where the

carrying capacity varied linearly and another invoking a

step change in carrying capacity in 1994. This step model

fitted the data best and gave an r2 between predicted and

observed population size of 0.85. Berryman and Lima

(2006) concluded that the shape of the functional form

for the density dependence is not altered by climatic

effects, but that environmental variation, specifically the

NAO, can influence K, invoking Royama’s (1992)

‘‘lateral’’ perturbation.

The functional forms of Grenfell et al. (1998),

Stenseth et al. (2004), and Berryman and Lima (2006)

were fit to different data sets. Grenfell et al. (1998) used

the whole-island time series between 1955 and 1998

including the poor quality data for 1962–1984, while

Stenseth et al. (2004) used the time series between 1955

and 2002. Berryman and Lima (2006) followed Clutton-

Brock and Pemberton’s (2004) recommendation and

used data of known quality collected between 1985 and

2004. Because the different studies used different time

series it is not clear how to easily make quantitative

comparisons between the various functional forms.

Although it would be straightforward to refit each

model to data collected since 1985, we choose not to do

this because the original choice of these phenomenolog-

ical time series models was guided by those data

available at the time of analysis; fitting these models to

currently available data may not provide a fair

comparison. We also do not consider the recent model

published by Hone and Clutton-Brock (2007) because

one of the climatic drivers identified, March rainfall,

cannot strongly influence dynamics because in many

years mortality of most age classes has occurred before

March (Hallett et al. 2004).

As well as counts of the whole-island population, the

Soay sheep living in the Village Bay catchment of the

island have been the focus of an individual-based study

since 1985 (Clutton-Brock and Pemberton 2004). The

Village Bay represents approximately one-third of the

whole of the island. Since 1985, .90% of individuals

living within the study area have been caught within

days of birth and uniquely marked with ear tags. They

are then followed throughout life with demographic

data collected during lambing (March–April), an annual

summer catch (August), the rut (October–November),

;30 censuses per year, and regular mortality searches.

The age and sex structure of the population in each year

is known. Full details of methodological data collection

are given in Clutton-Brock and Pemberton (2004).

The individual-based data have been the focus of a

range of analyses to identify individual and population
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level covariates that influence age- and sex-specific

survival and recruitment (Clutton-Brock et al. 1991,

1992, 1997, Catchpole et al. 2000, Tavecchia et al. 2005,

King et al. 2006). Such functions were combined by

Coulson et al. (2001) into a stochastic matrix model.

This model, which was parameterized using data

collected between 1985 and 1996, accurately described

the dynamics over 12 years (r2 between observed and

predicted population size of 0.92) and has provided

good predictions of subsequent population behavior

(see, for example, Coulson et al. [2001] for predictions to

2000). In this model, different climate variables influ-

enced survival in different age classes. Stenseth et al.

(2004) re-parameterized the model using all data to 2001

but used only one explanatory climatic variable, the

NAO, to model the effects of weather. The simplification

of the climatic drivers reduced model performance

compared to Coulson et al. (2001) but it did reduce

the number of state variables. Full details of parameter

estimation are given in Catchpole et al. (2000), Coulson

et al. (2001), and Stenseth et al. (2004) and are not

repeated here. We use the demographic model described

FIG. 2. Functional forms for density dependence used in different models. Heavy black lines represent the functional form
estimated from demographic data holding NAO and age structure at their mean values. Red lines represent the model of Grenfell et
al. (1998), green lines the model of Stenseth et al. (2004), and blue lines the model of Berryman and Lima (2006). The functional
form for density dependence is plotted in three ways: (A) the Ricker curve describing the association between logged population size
in consecutive years; (B) r¼ ln(w), where w is population growth, vs. log-transformed population size; and (C) w¼ ln(Ntþ1)/Nt vs.
(untransformed) population size. Filled symbols represent years when detailed demographic data were collected. Note that in
panels (D) and (E) only these years are shown in plots. (D) The effects of varying the NAO on the functional form of the density
dependence. Each thin dashed line represents the functional form of density dependence for each observed value of the NAO during
the course of the study. Thin solid lines show the functional form of density dependence for the values Stenseth et al. (2004) chose to
illustrate the nonadditive effects of climate. (E) Effects of age structure on the functional form of density dependence assuming
average weather (black lines), good weather (pink lines), and poor weather (yellow lines). (F) A comparison of our full demographic
model (black lines) with the simplified time series model (orange lines) for low, average, and high NAO years. Solid symbols
represent years when the detailed demographic data were collected.
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in Stenseth et al. (2004) to demonstrate our new

methods.

The model incorporates functions to describe age-

specific survival from August to August, when the

whole-island censuses are conducted, and recruitment.

Each function is linear on the logit scale and takes the

form

1

1� 1=expðaþ bz1 þ cz2 þ � � � þ kznÞ
ð3Þ

where z’s are the covariates that significantly influence

the age- or sex-class-specific demographic rate being

modeled. Mark–recapture analysis of individual capture

histories (Lebreton et al. 1992) identified seven separate

demographic groups: female lambs (first year of life),

female yearlings (second year of life), two- to six-year-

old females, females older than six, male lambs, one- to

six-year-old males, and males older than six (Catchpole

et al. 2000). Survival was explained with two covariates:

population size as described by the whole-island counts

at the beginning of the period, and winter weather, as

described by the winter NAO. In some age classes, there

was a significant interaction between population density

and the NAO (Table 1; Stenseth et al. [2004]).

Recruitment was modeled as a product of age-specific

fecundity, lamb survival from birth to the summer

census as a function of mother’s age, and mean litter size

of reproducing females (Tavecchia et al. 2005). Five

female age classes were defined for fecundity (lambs,

yearlings, two to six years old, seven to nine years old,

and greater than nine years old) and four age classes for

neonatal survival (lambs, yearlings, two to nine years

old, and greater than nine years old) (Stenseth et al.

2004). Fecundity and neonatal survival were modeled as

a function of the whole-island population size at the

beginning of the period, the winter NAO and their

interaction; twinning rate was set as an age-specific

constant. Recruitment was calculated as the product of

fecundity, the average litter size of breeding females, and

neonatal survival (Stenseth et al. 2004). Female lambs

can conceive in their first rut and never produce more

than one offspring. In contrast, approximately 15% of

older females produce twins. Parameter values for the

most parsimonious models (significance level a ¼ 0.05)

are provided in Table 1, and these are used to

demonstrate our approach.

The different models described above each have

constraints on the shape of the functional form they

can predict. For example, Eq. 2 constrains the shape

such that the rate of change in the population growth

rate increases with density. Regardless of the values used

for Rm, K, and Q in Eq. 2, the model cannot produce the

flat, horizontal function identified by Grenfell et al.

(1998). Because of these constraints, the choice of model

structure should be based on an understanding of the

biology of the system, and the parameter values that

determine the actual shape of the functional form should

be identified through statistical analysis of existing data.

One downside of phenomenological time series models is

they do not have to be informed by biological

understanding.

TABLE 1. Parameter estimates for the effects of density, the North Atlantic Oscillation (NAO), and their interaction from
statistical models of survival, fecundity, and lamb neonatal survival rates for individual Soay sheep (Ovis aries) in different
demographic classes.

Class and parameter Intercept Density NAO Interaction

Survival

Female lambs 0.5403 �0.3078 �1.6086 �0.6602
Female yearlings 2.2797 �0.1924 �2.4922 �0.5816
Female 2–6 years 2.7725 �0.1702 �1.975 �0.5041
Female .6 years 1.6199 �0.2409 �1.2312 �1.316
Male lambs �0.2068 �0.3053 �3.5837 �0.4202
Male 1–6 years 3.4038 �0.5066 �14.7928 1.6893
Male .6 years �0.4812 0 0 0

Fecundity

Female lambs �0.915 �0.376 �2.069 0
Female yearlings 0.815 �0.1017 �2.085 0
Female 2–6 years 1.3869 �0.0797 0 0
Female 7–9 years 1.106 �1.09 �2.052 �0.812
Female .9 years �1.099 0 0 0

Neonatal survival

Female lambs �0.654 �0.3436 �2.313 0
Female yearlings 1.293 �0.2318 �3.55 0
Female 2–9 years 2.084 �0.0614 �1.433 �0.562
Female .9 years 0.887 0 0 0

Notes: All models were linear on the logit scale (Eq. 3). Population density was transformed prior to model fitting such that
population density ¼ (actual population density � 1202.86)/100. The NAO was transformed such that NAO ¼ (actual NAO �
1.73)/10. The average litter sizes of breeding females aged 1 to 10 years were, respectively 1, 1.06, 1.11, 1.17, 1.23, 1.26, 1.27, 1.25,
1.2 and 1.14 lambs. No individuals .10 years old produced twins.
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THEORY LINKING DEMOGRAPHIC

AND TIME SERIES METHODS

If we define the number of recruits to the population

at time t as rt and the number of deaths between t and tþ
1 as mt, then

Ntþ1 ¼ Nt � mt þ rt: ð4Þ

The number of survivors, st, is simply Nt � mt, which

means that population growth over a time step, wt ¼
Ntþ1/Nt, can be written as follows:

Ntþ1 ¼ st þ rt

wt ¼
st þ rt

Nt

¼ s̄t þ r̄t:

ð5Þ

If s̄t and r̄t are influenced by a range of environmental or

individual covariates (x1,t to xk,t), and functions

describing these associations, f(s̄tjx1,t, x2,t, . . . , xk,t)

and f(r̄tjx1,t, x2,t, . . . , xk,t), can be characterized, then k¼
f(wtjx1,t, x2,t, . . . , xk,t) can be written as the sum of these

functions:

k ¼ f ðs̄tjx1;t; x2;t; . . . ; xk;tÞ þ f ðr̄tjx1;t; x2;t; . . . ; xk;tÞ ð6Þ

which describes how covariates influence the population

dynamics via recruitment and survival. Note that

survival and recruitment do not need to be of the same

form or influenced by the same covariates.

It is straightforward to extend Eq. 6 to include

demographic structure. If pi is the average proportion of

the population in age class i over time, then

k ¼
XX

i¼1

pi½ f ðs̄i;tjx1;t; x2;t; . . . ; xk;tÞ þ f ðr̄i;tjz1;t; z2;t; . . . ; zk;tÞ�:

ð7Þ

f(s̄t,ijx1,t, x2,t, . . . , xk,t) and f(r̄t,ijz1,t, z2,t, . . . , zk,t) for

each of the X age classes can be estimated using

individual-based survival and recruitment data using,

for example, generalized linear models (Crawley 2002)

and mark–recapture methods (Lebreton et al. 1992).

In Eq. 7, we have set the age structure to the average

proportions in each age class observed over the course of

the study. If pi is permitted to vary with time, pi,t, then a

function describing the dynamics can be obtained

having corrected for fluctuations in the demographic

structure:

k ¼
XX

i¼1

pi;t½ f ðs̄i;tjz1;t; z2;t; . . . ; zk;tÞ þ f ðr̄i;tjz1;t; x2;t; . . . ; zk;tÞ�:

ð8Þ

If one of the covariates, zt,k, is density then the

functional form of the density dependence can be

obtained by holding all other covariates constant while

varying the effects of density in the age-specific survival

and recruitment functions. It is also possible to hold

density constant in one age-class-specific demographic

function (or one age class) while letting it vary in the

others. Different resulting functional forms can then be

compared.

Eq. 7 describes how fluctuations in population size are

influenced by covariates, but it does not describe the

contribution of each of the covariates to overall

population dynamics. This contribution can be estimat-

ed by calculating how the inclusion of the covariate

influences the fit between observed and predicted

dynamics (as measured, for example, by r2 [Kvalseth

1985]). Suppose that two variables, z1 and z2, interact to

influence both survival and recruitment in a non-age-

structured population (Eq. 6). Then, to assess the

contribution of z2 via both its additive contribution

and its interaction with z1, we wish to compare the r2

values between observed population growth, wt, and

model predictions for population growth for the two

models:

k ¼ f ðs̄tjz1;t þ z2;t þ z1;t 3 z2;tÞ þ f ðr̄tjz1;t þ z2;t þ z1;t 3 z2;tÞ
ð9Þ

and

k ¼ f ðs̄tjz1;tÞ þ f ðr̄tjz1;tÞ: ð10Þ

We use this logic to estimate the overall contribution

of density dependence, the NAO, and age-structure

fluctuations to the population dynamics of Soay sheep.

It is also possible to estimate the contribution of density

dependence or climate to population growth via a

specific demographic rate by holding rate-specific

parameters at their mean values, but space precludes

us from reporting these results here.

Of course, the r2 value of an association is only one

measure of goodness of fit: as with all measures of

goodness of fit it has its strengths and limitations

(Kvalseth 1985). Although we use r2 values in this paper,

it would be straightforward to compare information

criteria like the AIC (Akaike’s information criteria) and

BIC (Bayesian information criteria) or even cross-

validation statistics between models. We choose r2

values as they provide a straightforward way to estimate

the relative contributions of different processes to the

population dynamics.

METHODS

The shape of the functional form for the density

dependence was identified using the parameter values in

Table 1 and Eq. 7 and setting and holding the NAO at

its mean value while varying density. The effect of

varying the NAO on the functional form for the density

dependence was explored by setting the NAO to a value

different from its mean and recalculating predictions

using Eq. 7. We calculated the functional form for the

density dependence for each value of the NAO observed

during the course of the detailed demographic study.
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The effect of changing the age structure on the shape

of the functional form was examined in a similar

manner. Initially we set the age structure to the mean

observed proportions, pi. Next we examined how

altering these proportions influenced the functional

form. We used observed demographic structures in each

year for values of pi,t. We repeated the examination of

age-structure effects for three values of the NAO: the

mean value, the highest observed value and the lowest

observed value.

Using the demographic model summarized in Table 1,

we examined how density dependence, the NAO, their

interaction and age-structure fluctuations contributed to

the observed population dynamics by comparing the r2

values between observed population growth in each year

and predicted population growth from models incorpo-

rating different processes. The terms that were incorpo-

rated into each model are shown in Tables 2 and 3.

We simplified the full demographic model specified in

Eq. 7 by first ignoring age-structure fluctuations and

simplifying the recruitment term (Appendix). We fitted

the resulting time series model to the time series data

collected since 1985. We fitted this model using

nonlinear least squares regression using the nls function

in R 2.4.1 (R Development Core Team 2006).

RESULTS

Comparing functional forms

The functional form estimated using Eq. 7 for the

mean value of the NAO is displayed in Fig. 2A–C where

it can be compared with those identified from time series

models. The models of Grenfell et al. (1998) and

Stenseth et al. (2004) qualitatively capture the functional

form estimated from the demographic data, while the

model of Berryman and Lima (2006) does not. The key

difference between the functional form of Berryman and

Lima (2006) and the others is the rate at which the

population growth rate declines with population size.

The functional form of Berryman and Lima (2006)

predicts that a small increase in density at high numbers

produces a large decline in population size. Such huge

density-dependent declines are not predicted by the

other functional forms.

The shape of the functional form for the density

dependence estimated from the demographic data varies

with both the NAO (Fig. 2D) and changing age

structure (Fig. 2E), and when both these processes are

included the fully specified model covers nearly the

entire range of observation (Fig. 2E). The only

exceptions are two points at low density when the

population grew faster than predicted. As winter

weather gets progressively worse (higher values of the

NAO), the functional form for the density dependence

becomes steeper. With increases in the proportion of the

population consisting of those age classes that are least

strongly influenced by density, the functional form

becomes shallower.

Contribution analysis

The correlation between observed population growth

and population growth predicted by the full demo-

graphic model (Table 1) is 0.872 (r2 ¼ 0.761). We

estimated the dynamics of population growth by fitting a

model where the NAO was held constant at its mean

value and the age-structure was held at pi but observed

density was fit as a covariate. The r2 between predicted

values from this model and observed population growth

was 46.2%, which we interpret as the additive contribu-

tion of density dependence to the population dynamics.

When we held density and the NAO at their mean values

but fitted pi,t as observed covariates, the resulting model

explained 21% of observed fluctuations, which suggests

that the additive effects of age-structure fluctuations

contribute about one-fifth to the observed dynamics,

approximately the same contribution as the NAO

(Tables 2 and 3). When combined, the additive

contribution of density, NAO and age-structure fluctu-

ations was 72.5%, with age-structure fluctuations

contributing least. When interactions between density

and NAO were included in the model, a further 3.6% of

the variation was explained (Tables 2 and 3). All model

fits are summarized in Table 2. When assessing the

contribution of different terms to the full model by

deletion, we found that density contributed most to the

population dynamics, followed by climate, age-structure

TABLE 2. The proportion of variation explained by demo-
graphic models incorporating density, NAO, their interac-
tion, and fluctuations in the age structure.

Model Density NAO
Age

structure
Density 3

NAO r r2

1 þ 0.680 0.462
2 þ 0.471 0.222
3 þ 0.460 0.212
4 þ þ 0.835 0.697
5 þ þ 0.709 0.503
6 þ þ 0.612 0.374
7 þ þ þ 0.851 0.725
8 þ þ þ 0.844 0.712
9 þ þ þ þ 0.872 0.761

Notes: Correlation coefficients (r) and the proportion of
variance explained by each model are also given (r2). A ‘‘þ’’
indicates that the parameter is included in the model. Model 9 is
the full demographic model parameterized with values in Table
1. To obtain the other models, some parameters in Table 1 are
set to 0. For example, model 1 is a model with all parameters set
to 0 except for those in the third column in Table 1 (density)
and age structure set to the population mean, p.

TABLE 3. An estimate of the contribution of density, the NAO,
their interaction, and the difference in r2 values between
models (Dr2) in Table 2.

Contribution Model comparison Dr2 (%)

Density model 9 � model 6 38.7
NAO model 9 � model 5 25.8
Age structure model 9 � model 8 4.9
Density 3 NAO model 9 � model 7 3.6
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fluctuations, and the interaction between density and the

NAO (Table 3).

The fit of the full demographic model summarized in

Table 2 shows that, when density and weather are fitted

simultaneously, there is no apparent need to invoke the

two distinct time periods used by Berryman and Lima

(2006) to explain substantial amounts of variation.

However, examination of Fig. 1 does show that a post

hoc division can be made. Between 1985 and 1995, the

maximum population size achieved was always less than

1500 sheep, while subsequently, population sizes prior to

a population decline have all been above 1800 individ-

uals.

Model simplification

Structured demographic models often have many

parameters. Can we simplify them, and if we do, how

does the simplified model perform? If we ignore age

structure and assume all individuals are identical, we can

start with Eq. 6. As long as the form of the survival and

recruitment functions are the same, and the shape of these

forms is similar then it is algebraically inevitable that

f ðs̄tjz1;t; zt;2; . . . ; zk;tÞ þ f ðr̄tjz1;t; zt;2; . . . ; zk;tÞ ð11Þ

can be approximated as

f ðwtjz1;t; zt;2; . . . ; zk;tÞ: ð12Þ

The functions in Eqs. 11 and 12 will have the same

form but parameters associated with the covariates xk,t
will (generally) differ. Because Eq. 12 does not explicitly

have terms describing birth and death, we consider this

to be a phenomenological time series model and not a

demographic model. In the specific case of the Soay

sheep we derive the following (see Appendix):

k ¼ 1þ nL

1þ exp�ðaþbNþcNAOþdN 3 NAOÞ ð13Þ

where L is a constant describing the average litter size of

breeding individuals, and n is a constant. The equation

can then simplified by deleting any nonsignificant terms

using standard model simplification methods (Crawley

2002).

The time series model parameterized with population

density, the NAO, and their interaction provided a good

description of observed fluctuations in the time series

between 1985 and 2006 and for the shorter time series

between 1985 and 2001. This latter parameterization

permits comparison with the demographic model (Table

4). The estimates for density and the NAO were larger in

the analysis of the longer time series (Table 4) suggesting

more pronounced (but not significantly so) effects of

population density and climate in later years. The r2

value between observed and predicted values for a

model including density, the NAO and their interaction

for the time series between 1985 and 2001 was 0.694

(Table 5), which is reasonably close to that obtained for

the demographic model described in Table 1 (0.761).

The functional form for the density dependence was

similar between the full demographic model and this

parameterization of the time series model (Fig. 2F).

However, a comparison between Tables 3 and 5 shows

that the time series model identifies a larger additive

contribution of the NAO (55.5%) to the population

dynamics compared with the full demographic model

(22.2%). A plot of the association between observed and

predicted population growth (Fig. 3) shows why: a

model with density, NAO and their interaction is well

behaved, but model simplification leads to increasingly

nonlinear associations between observed and predicted

dynamics.

DISCUSSION

In this paper, we do three novel things. First, we

demonstrate how it is possible to identify the association

between population density and the population growth

rate—the functional form for the density dependence—

using detailed individual-based life history data. We

apply the approach to data from a population of Soay

sheep and compare results obtained with detailed

demographic data with those obtained from phenome-

nological time series analyses. Second, we decompose

the population dynamic process into contributions from

a range of ecological processes including density

dependence, fluctuations in the age and sex structure,

TABLE 4. Parameter estimates of time series models based on
Eq. 13, parameterized to include the additive and interactive
effects of population density and the NAO.

Model and term

1955–2006 1986–2001

Estimate SE Estimate SE

Model 3

Intercept 0.1996 0.1158 0.1565 0.1302
Density �0.1528 0.0283 �0.1369 0.0351
NAO �1.7773 0.5345 �1.5844 0.5899

Model 4

Intercept 0.1884 0.1187 0.1478 0.1306
Density �0.1622 0.0310 �0.1423 0.0357
NAO �1.6194 0.5594 �1.4236 0.5967
Density 3 NAO �0.1687 0.1938 �0.2298 0.2114

Notes: The table shows parameter estimates for a model that
does not include the interaction between the NAO and
population density (model 3) and a model that does include
the interaction (model 4). These can be compared with
parameter values in Table 1, but a formal comparison is not
provided here. Boldface type represents significance at a , 0.5.

TABLE 5. Performance of time series models based on Eq. 13.

Model Density NAO Density 3 NAO r

1 þ 0.450
2 þ 0.555
3 þ þ 0.665
4 þ þ þ 0.694

Note: The table shows the r2 between observed and predicted
population growth using four different models; a ‘‘þ’’ indicates
that the term is included in the model.
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and environmental variation. In the population ana-

lyzed, the additive effects of density dependence are

approximately twice as important in determining dy-

namics as are the additive effects of age-structure

variation or climate. However, in order to gain a good

understanding of the dynamics, density dependence,

environmental stochasticity and differences between

individuals have to be considered. Third, we simplify

our fully specified demographic model to generate a

phenomenological time series model. This model per-

forms well in capturing the key processes identified by

the full demographic approach.

There are substantial differences between the time

series models that have been fitted to the Soay sheep

data in the past. Berryman and Lima (2006) argued that

only the carrying capacity was a function of environ-

mental drivers, but that other parameters were not. This

means that the functional form for the density depen-

dence maintains its shape, but moves horizontally along

the x-axis in Fig. 2 as a function of environmental

variation. Royama (1992) referred to this as a ‘‘lateral

perturbation’’ effect. The SETAR model of Grenfell et

al. (1998) also suggests that the functional form for the

density dependence maintains its shape above the

threshold they identify, and that climate does not move

it along the x-axis in Fig. 2, but rather shifts it vertically

in what Royama (1992) calls a ‘‘vertical perturbation.’’

The nonadditive model of Stenseth et al. (2004) proposes

that climate alters the functional form for the density

dependence by effectively rotating it above the thresh-

old. The demographic analyses broadly support the

conclusion that weather only matters at high density

(Fig. 2; see also Coulson et al. 2001), but the

decomposition we report here suggests that the nonad-

ditivity makes a relatively small contribution to the

population dynamics (Tables 2 and 3). This highlights

the interesting point that nonadditivity in one model can

be captured with additive effects in another. Overall,

however, the model of Stenseth et al. (2004) provides

estimates of the functional form that agree most closely

with those identified from the demographic data,

although the model of Grenfell et al. (1998) also

performs well. The model proposed by Berryman and

Lima (2006) provides a picture of the dynamics that is at

odds with the demographic analyses. However, this

model does fit the data well when goodness of fit is

assessed with r2. This demonstrates that if some

measures of statistical fit are used independently of

biological understanding (in this case the processes

influencing birth and death) they do not necessarily help

FIG. 3. Model checking plots comparing observed and predicted values for the four time series models (Eq. 13) summarized in
Table 5. (A) The behavior of the full model with main effects of weather and density and their interaction; (B) main effects for
density and weather; (C) the main effect of density alone; (D) the behavior of the model containing a main effect of weather alone.
Dashed lines represent y ¼ x. Note that the y-axis scale differs in (D), the model for the NAO.
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in providing insight (Kuparinen et al. 2007). We suspect

that analyses of individual survival and recruitment

records are, in general, more likely to provide insight

that is closer to reality than phenomenological models of

population counts that do not incorporate such detail.

The phenomenological time series model we derive

provides a description of the dynamics which is

consistent with that identified from the demographic

analyses. This should not be surprising given the

equation is approximated directly from the demographic

equations. The time series model incorporating density,

NAO, and their interaction (Tables 4 and 5) captures the

functional form for the density dependence identified

with the demographic model more accurately than any

of the other time series approaches. The model we derive

can easily be extended to incorporate lagged effects of

density or other environmental drivers simply by

incorporating more terms in the exponential part of

the function as is standard in linear autoregressive

models (Royama 1992). If the initial demographic

functions to be simplified are nonlinear, simplification

may be more challenging than in the linearized example

we used. However, linearized analyses of demographic

data are frequently used (e.g., Lebreton et al. 1992,

Jorgenson et al. 1997, Hall et al. 2001, King et al. 2006),

although nonlinear analyses of demographic rates within

the mark–recapture framework have recently been

developed (Gimenez et al. 2006). One assumption of

our method as we apply it here is that the association

between environmental drivers and survival and recruit-

ment are well described by linearizable functions that

can be estimated from mark–recapture approaches or

general linearized modeling with a binomial error

structure. This assumption is not general, it is specific

to the application we report here.

The Soay sheep study is unusual in that we have such

a detailed biological understanding of the system

(Clutton-Brock and Pemberton 2004). The population

is food limited (Crawley et al. 2004). During the summer

months vegetation biomass increases as plant produc-

tivity is always greater than losses to herbivory. At the

end of the main growing season, in the autumn, the

biomass of available vegetation depends on the number

of sheep, possibly the composition of the population,

and weather during the growing season (April to

September). At the onset of winter, sheep are in peak

condition (Clutton-Brock and Coulson 2002) although

summer weights do vary from year to year (Clutton-

Brock and Pemberton 2004). During winter, sheep

deplete the standing biomass produced over the summer.

Depending on sheep numbers and the size of the

standing crop, the biomass may run out before the start

of the next growing season. Overwinter grass growth can

occur when the temperature is above 58C. Thus, two sets

of weather variables may have indirect effects on sheep

dynamics: those determining the size of the forage crop

at the end of the growing season; and those affecting the

rate of primary production during the winter when green

biomass is low. Finally, climate also influences sheep

directly by imposing energetic demands, and this in turn

influences the food requirements of individuals (Grenfell

et al. 1998). In previous work, we have shown that the

timing of spells of harsh weather within a winter

influences the mortality schedule within the population

and that this can generate an interaction between

climate and density (Hallett et al. 2004). For example,

if many sheep die relatively early, this reduces compe-

tition among survivors for the remaining biomass, and

survival rates through the rest of the winter are relatively

high. In contrast, if few sheep die early in the winter,

competition for food remains high, leading to high

mortality later in the winter as a relatively small

proportion of sheep succeed in fulfilling their energetic

demands (Hallett et al. 2004). Our understanding of the

biology points to a complex interaction between climate

and population dynamics mediated through food

availability. This conclusion is also supported through

analysis of individual demographic rates (Catchpole et

al. 2000, Coulson et al. 2001). Biologically, it seems

highly unlikely that climate operates only via the

carrying capacity and, more likely, that both of

Royama’s (1992) lateral and vertical perturbations need

to be invoked to accurately capture the modus operandi

of density and climate within this population. We are

keen for population ecologists to use the Soay sheep

time series to test the performance of a range of models

and approaches, and we hope that our biological

understanding of the system described above is helpful

when constructing models.

Clearly, it is not desirable to incorporate every

potentially important process in a general model of

population dynamics. Detailed understanding of indi-

vidual systems is most useful if it can advise on the

appropriate form for simple models that provide useful

insight into the dynamics of systems where detailed data

are not available. We now consider the classical

theoretical approaches that ecologists have used, before

advocating the more statistically rigorous frameworks

that have recently been championed. The standard

approach to identifying the functional form for the

density dependence is to examine the association

between logged population size or the population

growth rate and logged population size in previous time

steps, while ignoring other drivers. When density in

many previous steps is required to describe population

growth the functional form is usually assumed to be

linear (Royama 1992). If only direct density dependence

is considered then the association is often assumed to be

nonlinear (May 1976). Direct nonlinear density depen-

dence, or linear direct and delayed density dependence,

can generate dynamical patterns that qualitatively

resemble patterns observed in nature, and this may be

one reason why these forms are so often selected.

Density is typically fitted independently as a first step in

analyses because if only one process needs to be invoked

to capture an observed dynamical pattern, then dynam-
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ics are comparatively simple and analytical solutions are

often tractable. However, there is mounting evidence

that the dynamics of free-living populations can be

influenced by a range of factors (Stenseth et al. 2002,

Bonsall and Benmayor 2005, Benton et al. 2006, Hanski

and Saccheri 2006), and that focusing on one factor, or

failing to fit model terms simultaneously can influence

results. In a linear and purely additive framework where

density and climatic drivers are not correlated and do

not interact to influence population growth, the order of

adding terms will make no difference to results.

However, in non-additive and nonlinear frameworks

the order in which terms are fitted into models can

influence results. Given how easy it is to fit terms

simultaneously into statistical models of population

growth, we argue that population ecologists should no

longer focus on attempting to join the dots with

nonlinear univariate functions prior to explaining away

residuals with linear associations with covariates, but

should embrace a more sophisticated statistical frame-

work. Fortunately, many such approaches are currently

being developed that do this (Sæther et al. 2002b, 2005,

Lande et al. 2003, Stenseth et al. 2004, Clark 2007). The

approach we develop here has substantial potential to

investigate the relative importance of different popula-

tion and individual-level processes for the population

dynamics. As long as a variable is statistically associated

with survival or recruitment its contribution to the

dynamics can be assessed. The biggest assumption is the

choice of function describing the association between

variables and demographic rates, although this choice is

typically straightforward.

Before invoking nonlinear effects it seems sensible to

examine the performance of linear, or linearized, direct

density dependence when combined with climatic vari-

ation. There is a growing number of papers where this is

done (Sæther et al. 2002b, 2005). It is becoming apparent

that linear, or linearized, interactions between density

dependence and environmental drivers can generate a

range of dynamical patterns seen in nature (Royama

1992, Coulson et al. 2004, Boyce et al. 2006) and that

strong nonlinear density dependence does not necessarily

need to be invoked to generate complex dynamics. The

time series model we derive in Eq. 13 is linearized and

links directly to the fundamental biological processes of

birth and death. It also has the added advantage that it

does not include parameters like carrying capacity that

are difficult, or impossible, to measure directly in the

field: something that makes model validation difficult.

We suspect that considerable insights into the dynamics

of populations can be obtained by simultaneously

considering the effects of density and environmental

variation in a linear framework.

We also present a decomposition of the population

dynamic process into relative contributions from density

dependence, environmental stochasticity, and age-struc-

ture fluctuations. A comparison of a model that

incorporated age-structure fluctuations with one that

did not suggested that age-structure fluctuations explain

;5% of the observed dynamics. In contrast, when fitted

alone, age-structure effects explained about as much

variation as climate (;20%). The relative contribution

of age-structure fluctuations to population dynamics

depends on how much the structure of the population

fluctuates (Tuljapurkar 1990, Caswell 2001), the corre-

lation between the structure of the population and other

drivers like population density and climate (Coulson et

al. 2001), and the similarity of the effects of these drivers

on age-specific survival and recruitment. In the model

we use here, each age and sex class is influenced by the

NAO: a useful, but crude, approximation of local

climate (Hallett et al. 2004, Stenseth and Mysterud

2005). However, previous research on this population

has shown that survival and recruitment in different age

and sex classes are actually influenced by different

climatic drivers (Catchpole et al. 2000, Coulson et al.

2001). We suspect that a model that includes different

drivers within each demographic class would lead to

greater variation being apportioned to age-structure

fluctuations, but we do not develop that argument here.

In this paper, we have demonstrated that it is

straightforward to estimate the functional form for the

density dependence from demographic data, and to

decompose observed population dynamics into contri-

butions from different ecological processes. We have

also derived a simple time series model from demo-

graphic analyses. This model is very flexible and can be

extended to incorporate a range of ecological factors of

interest to population biologists. We hope that applica-

tion of this approach to other detailed demographic data

sets will help provide insight into interactions between

density, climate variation, and population growth, and

that these will lead to the development of improved

simple models that can be used where detailed long-term

data are not available.
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APPENDIX

Derivation of time series model (Ecological Archives E089-100-A1).
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