267 research outputs found

    Spectral and polarimetric characterization of the Gas Pixel Detector filled with dimethyl ether

    Full text link
    The Gas Pixel Detector belongs to the very limited class of gas detectors optimized for the measurement of X-ray polarization in the emission of astrophysical sources. The choice of the mixture in which X-ray photons are absorbed and photoelectrons propagate, deeply affects both the energy range of the instrument and its performance in terms of gain, track dimension and ultimately, polarimetric sensitivity. Here we present the characterization of the Gas Pixel Detector with a 1 cm thick cell filled with dimethyl ether (DME) at 0.79 atm, selected among other mixtures for the very low diffusion coefficient. Almost completely polarized and monochromatic photons were produced at the calibration facility built at INAF/IASF-Rome exploiting Bragg diffraction at nearly 45 degrees. For the first time ever, we measured the modulation factor and the spectral capabilities of the instrument at energies as low as 2.0 keV, but also at 2.6 keV, 3.7 keV, 4.0 keV, 5.2 keV and 7.8 keV. These measurements cover almost completely the energy range of the instrument and allows to compare the sensitivity achieved with that of the standard mixture, composed of helium and DME.Comment: 20 pages, 11 figures, 5 tables. Accepted for publication by NIM

    Completing the triad: Synthesis and full characterization of homoleptic and heteroleptic carbonyl and nitrosyl complexes of the group VI metals

    Get PDF
    Oxidation of M(CO)6_{6} (M = Cr, Mo, W) with the synergistic oxidative system Ag[WCA]/0.5 I2_{2} yields the fully characterized metalloradical salts [M(CO)6_{6}]+˙[WCA]− (weakly coordinating anion WCA = [F-{Al(ORF^{F})3_{3}}2_{2}]^{-}, RF^{F} = C(CF3_{3})3_{3}). The new metalloradical cations with M = Mo and W showcase a similar structural fluxionality as the previously reported [Cr(CO)6_{6}]+^{+}˙. Their reactivity increases from M = Cr < Mo < W and their syntheses allow for in-depth insights into the properties of the group 6 carbonyl triad. Furthermore, the reaction of NO+^{+}[WCA]^{-} with neutral carbonyl complexes M(CO)6_{6} gives access to the heteroleptic carbonyl/nitrosyl cations [M(CO)5_{5}(NO)]+^{+} as salts of the WCA [Al(ORF)4_{4}]^{-}, the first complete transition metal triad of their kind

    Structure of Herpes Simplex Virus Glycoprotein D Bound to the Human Receptor Nectin-1

    Get PDF
    Binding of herpes simplex virus (HSV) glycoprotein D (gD) to a cell surface receptor is required to trigger membrane fusion during entry into host cells. Nectin-1 is a cell adhesion molecule and the main HSV receptor in neurons and epithelial cells. We report the structure of gD bound to nectin-1 determined by x-ray crystallography to 4.0 Å resolution. The structure reveals that the nectin-1 binding site on gD differs from the binding site of the HVEM receptor. A surface on the first Ig-domain of nectin-1, which mediates homophilic interactions of Ig-like cell adhesion molecules, buries an area composed by residues from both the gD N- and C-terminal extensions. Phenylalanine 129, at the tip of the loop connecting β-strands F and G of nectin-1, protrudes into a groove on gD, which is otherwise occupied by C-terminal residues in the unliganded gD and by N-terminal residues in the gD/HVEM complex. Notably, mutation of Phe129 to alanine prevents nectin-1 binding to gD and HSV entry. Together these data are consistent with previous studies showing that gD disrupts the normal nectin-1 homophilic interactions. Furthermore, the structure of the complex supports a model in which gD-receptor binding triggers HSV entry through receptor-mediated displacement of the gD C-terminal region

    XPOL-III: a New-Generation VLSI CMOS ASIC for High-Throughput X-ray Polarimetry

    Full text link
    While the successful launch and operation in space of the Gas Pixel Detectors onboard the PolarLight cubesat and the Imaging X-ray Polarimetry Explorer demonstrate the viability and the technical soundness of this class of detectors for astronomical X-ray polarimetry, it is clear that the current state of the art is not ready to meet the challenges of the next generation of experiments, such as the enhanced X-ray Timing and Polarimetry mission, designed to allow for a significantly larger data throughput. In this paper we describe the design and test of a new custom, self-triggering readout ASIC, dubbed XPOL-III, specifically conceived to address and overcome these limitations. While building upon the overall architecture of the previous generations, the new chip improves over its predecessors in several, different key areas: the sensitivity of the trigger electronics, the flexibility in the definition of the readout window, as well as the maximum speed for the serial event readout. These design improvements, when combined, allow for almost an order of magnitude smaller dead time per event with no measurable degradation of the polarimetric, spectral, imaging or timing capability of the detector, providing a good match for the next generation of X-ray missions.Comment: accepted for publication at Nuclear Inst. and Methods in Physics Research Section

    First light from a very large area pixel array for high-throughput x-ray polarimetry

    Get PDF
    We report on a large active area (15x15mm2), high channel density (470 pixels/mm2), self-triggering CMOS analog chip that we have developed as pixelized charge collecting electrode of a Micropattern Gas Detector. This device, which represents a big step forward both in terms of size and performance, is the last version of three generations of custom ASICs of increasing complexity. The CMOS pixel array has the top metal layer patterned in a matrix of 105600 hexagonal pixels at 50μm pitch. Each pixel is directly connected to the underneath full electronics chain which has been realized in the remaining five metal and single poly-silicon layers of a standard 0.18μm CMOS VLSI technology. The chip has customizable self-triggering capability and includes a signal pre-processing function for the automatic localization of the event coordinates. In this way it is possible to reduce significantly the readout time and the data volume by limiting the signal output only to those pixels belonging to the region of interest. The very small pixel area and the use of a deep sub-micron CMOS technology has brought the noise down to 50 electrons ENC. Results from in depth tests of this device when coupled to a fine pitch (50μm on a triangular pattern) Gas Electron Multiplier are presented. The matching of readout and gas amplification pitch allows getting optimal results. The application of this detector for Astronomical X-Ray Polarimetry is discussed. The experimental detector response to polarized and unpolarized X-ray radiation when working with two gas mixtures and two different photon energies is shown. Results from a full MonteCarlo simulation for several galactic and extragalactic astronomical sources are also reported

    LHC1: a semiconductor pixel detector readout chip with internal, tunable delay providing a binary pattern of selected events

    Get PDF
    The Omega3/LHCl pixel detector readout chip comprises a matrix of 128 X 16 readout cells of 50 mu m X 500 mu m and peripheral functions with 4 distinct modes of initialization and operation, together more than 800 000 transistors. Each cell contains a complete chain of amplifier, discriminator with adjustable threshold and fast-OR output, a globally adjustable delay with local fine-tuning, coincidence logic and memory. Every cell can be individually addressed for electrical test and masking, First results have been obtained from electrical tests of a chip without detector as well as from source measurements, The electronic noise without detector is similar to 100 e(-) rms. The lowest threshold setting is close to 2000 e(-) and non-uniformity has been measured to be better than 450 e(-) rms at 5000 e(-) threshold. A timewalk of < 10 ns and a precision of < 6 ns rms on a delay of 2 mu s have been measured. The results may be improved by further optimization

    Modulation of pain perception by transcranial magnetic stimulation of left prefrontal cortex

    Get PDF
    Evidence by functional imaging studies suggests the role of left dorsolateral prefrontal cortex (DLPFC) in the inhibitory control of nociceptive transmission system. Repetitive transcranial magnetic stimulation (rTMS) is able to modulate pain response to capsaicin. In the present study, we evaluated the effect of DLPFC activation (through rTMS) on nociceptive control in a model of capsaicin-induced pain. The study was performed on healthy subjects that underwent capsaicin application on right or left hand. Subjects judged the pain induced by capsaicin through a 0–100 VAS scale before and after 5 Hz rTMS over left and right DLPFC at 10 or 20 min after capsaicin application in two separate groups (8 subjects each). Left DLPFC-rTMS delivered either at 10 and 20 min after capsaicin application significantly decreased spontaneous pain in both hands. Right DLPFC rTMS showed no significant effect on pain measures. According to these results, stimulation of left DLPFC seems able to exert a bilateral control on pain system, supporting the critical antinociceptive role of such area. This could open new perspectives to non-invasive brain stimulation protocols of alternative target area for pain treatment

    A Rule-Based Contextual Reasoning Platform for Ambient Intelligence Environments

    Get PDF
    The special characteristics and requirements of intelligent environments impose several challenges to the reasoning processes of Ambient Intelligence systems. Such systems must enable heterogeneous entities operating in open and dynamic environments to collectively reason with imperfect context information. Previously we introduced Contextual Defeasible Logic (CDL) as a contextual reasoning model that addresses most of these challenges using the concepts of context, mappings and contextual preferences. In this paper, we present a platform integrating CDL with Kevoree, a component-based software framework for Dynamically Adaptive Systems. We explain how the capabilities of Kevoree are exploited to overcome several technical issues, such as communication, information exchange and detection, and explain how the reasoning methods may be further extended. We illustrate our approach with a running example from Ambient Assisted Living. © 2013 Springer-Verlag Berlin Heidelberg
    corecore