
A Rule-based Contextual Reasoning Platform
for Ambient Intelligence environments

Assaad Moawad1, Antonis Bikakis2, Patrice Caire1, Grégory Nain1 and Yves
Le Traon1

1 University of Luxembourg, SnT
firstname.lastname@uni.lu

2 Department of Information Studies, University College London
a.bikakis@ucl.ac.uk

Abstract. The special characteristics and requirements of intelligent
environments impose several challenges to the reasoning processes of
Ambient Intelligence systems. Such systems must enable heterogeneous
entities operating in open and dynamic environments to collectively rea-
son with imperfect context information. Previously we introduced Con-
textual Defeasible Logic (CDL) as a contextual reasoning model that
addresses most of these challenges using the concepts of context, map-
pings and contextual preferences. In this paper, we present a platform
integrating CDL with Kevoree, a component-based software framework
for Dynamically Adaptive Systems. We explain how the capabilities of
Kevoree are exploited to overcome several technical issues, such as com-
munication, information exchange and detection, and explain how the
reasoning methods may be further extended. We illustrate our approach
with a running example from Ambient Assisted Living.

Keywords: contextual reasoning, distributed reasoning, Ambient Intel-
ligence, system development

1 Introduction

Ambient Intelligence (AmI) constitutes a new paradigm of interaction among
agents acting on behalf of humans, smart objects and devices. Its goal is to
transform our living and working environments into intelligent spaces able to
adapt to changes in contexts and to their users’ needs and desires. This requires
augmenting the environments with sensing, computing, communicating and rea-
soning capabilities. AmI systems are expected to support humans in their every
day tasks and activities in a personalized, adaptive, seamless and unobtrusive
fashion [1]. Therefore, they must be able to reason about their contexts, i.e. with
any information relevant to the interactions between the users and system.

The imperfect nature of context, and the special characteristics of AmI en-
vironments impose several challenges in the reasoning tasks. Henricksen and
Indulska [2] characterize four types of imperfect context: unknown, ambiguous,
imprecise, and erroneous. Sensor or connectivity failures, which are inevitable

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/16434882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


in wireless connections, result in situations that not all context data is available
at any time. When data about a context property comes from multiple sources,
then context may become ambiguous. Imprecision is common in sensor-derived
information, while erroneous context arises as a result of human or hardware
errors. Context is typically distributed among agents with different views of
the environment that use different languages to describe it. Due to the highly
dynamic and open nature of the environments and the unreliable wireless com-
munications, agents do not typically know a priori all other entities present at a
specific time instance, nor can they communicate directly with all of them. De-
spite these restrictions, they must be able to reach common conclusions about
the state of the environment and collectively take context-aware decisions.

In previous works we introduced a new nonmonotonic logic, Contextual De-
feasible Logic (CDL), tailored to the specific requirements of AmI systems. We
presented its language and argumentation semantics, proved its formal proper-
ties [3], and developed algorithms for distributed query evaluation [4]. We also
showed how CDL may enable heterogenous devices to collectively reason with
imperfect context, and take context-aware decisions in a distributed fashion.
This paper is a further step towards reasoning with CDL and making it real in
an AmI environment. Here, we focus on scenarios from Ambient Assisted Living
(AAL), though the same findings may be applied to any subfield of AmI. AAL is
a relatively new research and application domain focused on the technologies and
services to enhance the quality of life of people with reduced autonomy, such as
the elderly. In the framework of the CoPAInS project1, such problematic is stud-
ied to evaluate the tradeoffs to be made in AAL systems [5], particularly as they
pertain to conviviality, privacy and security [6]. Creating this bridge between
CDL and AAL requires addressing issues, such as dynamicity, adaptability, de-
tection and communication between devices, and is therefore not trivial. This
prompts our research question: How to deploy CDL in real AmI environments?

To address this question, we created a platform that maps the CDL model to
the business view of AAL using Kevoree [7]. Kevoree is designed to facilitate the
development of Distributed Dynamically Adaptive Systems. Particular features
of Kevoree make it a suitable for our needs: ability to implement heterogeneous
entities as independent nodes; use of communication channels to enable message
exchanges between nodes; support for shared models to enable common repre-
sentations for different types of nodes; adaptive capabilities to fit with the open
and dynamic nature of AAL.

The contribution of this work is twofold: (a) we describe solutions for the
deployment of a theoretical model (CDL) in real AmI environments; and (b)
we provide an AAL platform, usable by anyone to test and implement AAL
scenarios. The rest of the paper is structured as follows. Section 2 describes our
running AAL example. Sections 3 and 4 present the theoretical and technical
background of this work, namely CDL and Kevoree. Section 5 describes the
integration of CDL with Kevoree in our novel AAL platform. Section 6 presents
related work, and Section 7 concludes and presents our plans for future work.

1 http://wwwen.uni.lu/snt/research/serval/projects/copains



2 An Ambient Assisted Living Example

In this section, we present an Ambient Assisted Living (AAL) scenario, part of
a series of scenarios validated by HotCity, the largest WI-FI network in Luxem-
bourg, in the Framework of our CoPAInS project (Conviviality and Privacy in
Ambient Intelligence Systems).

In our scenario, visualized in Figure 1, the eighty-five years old Annette is
prone to heart failures. The hospital installed a Home Care System (HCS) at her
place. One day, she falls in her kitchen and cannot get up. The health bracelet
she wears gets damaged and sends erroneous data, e.g., heart beat and skin
temperature, to the HCS. Simultaneously, the system analyzes Annette’s activ-
ity captured by the Activity Recognition Module (ARM). Combining all the
information to Annette’s medical profile, and despite the normal values trans-
mitted by Annette’s health bracelet, the system infers an emergency situation.
It contacts the nearby neighbors asking them to come and help.

emergency

prone to 
heart attack normal pulse

lying on 
the floor

Fig. 1. Context Information flow in the scenario.

This scenario exemplifies challenges raised when reasoning with the avail-
able context information in Ambient Intelligence environments. Furthermore, it
highlights the difficulties in making correct context-dependent decisions.

First, context knowledge may be erroneous. In our example, the values trans-
mitted by the health bracelet for Annette’s heart beat and skin temperature, are
not valid, thereby leading to a conflict about Annette’s current condition. Sec-
ond, local knowledge is incomplete, in the sense that none of the agents involved
has immediate access to all the available context information. Third, context
knowledge may be ambiguous; in our scenario, the HCS receives mutually in-
consistent information from the ARM and the health bracelet. Fourth, context
knowledge may be inaccurate; for example, Annette’s medical profile may contain
corrupted information. Finally, devices communicate over a wireless network.
Such communications are unreliable due to the nature of wireless networks, and
are also restricted by the range of the network. For example, the health bracelet
may not be able to transmit its readings to HCS due to a damaged transmitter.

In the next section, we analyze how CDL enables devices to model and reason
with such imperfections.



3 Contextual Defeasible Logic

Contextual Defeasible Logic (CDL) is a distributed rule-based approach for con-
textual reasoning, which was recently proposed as a reasoning model for Ambient
Intelligence systems [3]. CDL adopts ideas from:

– Defeasible Logic [8] - it is rule-based, skeptical, and uses priorities to resolve
conflicts among rules;

– Multi-Context Systems (MCS, [9, 10]) - logical formalizations of distributed
context theories connected through mapping rules, which enable information
flow between contexts. In MCS, a context can be thought of as a logical
theory - a set of axioms and inference rules - that models local knowledge.

Below, we present the representation model of CDL and explain how it fits
with the special characteristics and requirements of Ambient Intelligence envi-
ronments. We also present an operational model of CDL in the form of a query
evaluation algorithm, which we implemented in Kevoree.

3.1 Representation Model

In CDL, the MCS model is extended with defeasible rules and a preference
relation on the system contexts. In CDL, a MCS C is a set of contexts Ci: A
context Ci is defined as a tuple of the form (Vi, Ri, Ti), where Vi is the vocabulary
of Ci, Ri is a set of rules, and Ti is a preference ordering on C.

Vi is a set of positive and negative literals of the form (ci : ai) and ∼ (ci : ai),
which denotes the negation of (ci : ai). Each context uses a distinct vocabulary,
i.e. Vi ∩ Vj = ∅ iff i 6= j. This reflects the fact that each entity (e.g. device in
an Ambient Intelligence environment) may use its own terminology. We should
note, though, that the proposed model may also enable different contexts to
use common literals (e.g. URIs) by adding a context identifier, e.g. as a prefix,
in each such literal and using appropriate mappings to associate them to each
context.

Ri consists of a set of local rules and a set of mapping rules. The body of
a local rule is a conjunction of local literals (literals that are contained in Vi),
while its head is labeled by a local literal. There are two types of local rules:

– Strict rules, of the form

rli : (ci : a1), . . . , (ci : an−1)→ (ci : an)

They express sound local knowledge and are interpreted in the classical sense:
whenever the literals in the body of the rule ((ci : a1), . . . , (ci : an−1)) are
strict consequences of the local theory, then so is the conclusion of the rule
((ci : an)). Strict rules with empty body denote factual knowledge.

– Defeasible rules, of the form

rdi : (ci : a1), . . . , (ci : an−1)⇒ (ci : an)

They are used to express uncertainty: a defeasible rule cannot be applied to
support its conclusion if there is adequate contrary evidence.



Mapping rules associate local literals of Ci with literals from the vocabularies
of other contexts (foreign literals). The body of each such rule is a conjunction
of local and foreign literals, while its head is labeled by a local literal. Mapping
rules are modeled as defeasible rules of the form:

rmi : (cj : a1), . . . , (ck : an−1)⇒ (ci : an)

A mapping rule associates literals from different contexts (e.g. (cj : a1) from Cj

and (ck : an−1) from Ck), with a local literal of the context that has defined
ri, which labels the head of the rule (here (ci : an)). By representing mappings
as defeasible rules, we can deal with ambiguities and inconsistencies caused by
importing mutually conflicting information from different contexts.

Finally, each context Ci defines a strict total preference ordering Ti on C to
express its confidence in the knowledge it imports from other contexts:

Ti = [Ck, Cl, ..., Cn]

Ck is preferred to Cl by Ci, if Ck precedes Cl in Ti. The strict total ordering
enables resolving all potential conflicts that may arise from the interaction of
contexts through their mapping rules. In a later version of CDL [11], Ti is defined
as a partial preference order on C, which enables handling incomplete preference
information. For sake of simplicity, we adopt here the original definition of Ti.

Example. The scenario described in Section 2 may be modeled as follows in
CDL. We consider 5 different contexts: sms for the SMS system, hcs for the
Home Care Syste, arm for the activity recognition module, br for the bracelet,
and med for the medical profile. sms has only one mapping rule according to
which, when the Home Care System detects an emergency situation, the SMS
system dispatches messages to a prescribed list of mobile phone numbers:

rmsms : (hcs : emergency)⇒ (sms : dispatchSMS)

The Home Care system imports information from the activity recognition
module, the bracelet and Annete’s medical profile to detect emergency situations
using two mapping rules:

rm1
hcs : (br : normalPulse)⇒ ¬(hcs : emergency)

rm2
hcs : (arm : lyingOnF loor), (med : proneToHA)⇒ (hcs : emergency)

The factual knowledge of the other three modules is modeled using local rules
with empty body:

rlbr :→ (br : normalPulse)

rlarm :→ (arm : lyingOnF loor)

rlmed :→ (med : proneToHA)

The Home Care System is configured to give highest priority to information
imported by the medical profile and lowest priority to the bracelet:

Thcs = [med, arm, br]



3.2 Distributed Query evaluation

In [3] we presented an argumentation semantics of CDL, while in [4] we provided
four algorithms for query evaluation. P2P DR is one of these algorithms, which
is called when a context Ci is queried about the truth value of one of its local
literals (ci : ai), and roughly proceeds as follows:

Algorithm 1 P2P DR

if (ci : ai) (or ¬(ci : ai)) is derived as a conclusion of the local rules of Ci then
return true (or false resp.)

else
for all rules ri in ci that have (ci : ai) or ¬(ci : ai) in their heads do

if ri is applicable then
Compute the Supportive Set of ri, SSri

Compute the Supportive Sets of (ci : ai), SS(ci:ai), and ¬(ci : ai), SS¬(ci,ai)

if SS(ci:ai) is stronger than SS¬(ci,ai) with respect to Ti then
return true

else
return false

We should note that a rule ri is applicable when for all its body literals
we have obtained positive truth values. SSri is the union of the foreign literals
with the Supportive Sets of the local literals contained in the body of ri, while
SS(ci:ai) is the strongest between the Supportive Sets of the rules with head
(ci : ai). A set of literals S1 is stronger than set S2 w.r.t. Ti iff there is a literal
l in S2, such that all literals in S1 are stronger than l w.r.t. Ti. A literal (ck : a)
is stronger than literal (cl : b) w.r.t. Ti iff Ck precedes Cl in Ti.

Example (continued). In our running example, a query to sms about (sms :
dispatchSMS) will initiate a second query to hcs about (hcs : emergency).
The second query will in turn initiate three more queries: a query to br about
(br : normalPulse); a query to arm about (arm : lyingOnF loor); and a query
to med about (med : proneToHA). P2P DR will return true for the latter three
queries, and will compute SS(hcs:emergency) = {(arm : lyingOnF loor), (med :
proneToHA)} and SS¬(hcs:emergency) = {(br : normalPulse)}. W.r.t. Thcs, all
elements of SS(hcs:emergency) are stronger than (br : normalPulse), therefore
P2P DR will return a positive truth value for (hcs : emergency), and the same
value for (sms : dispatchSMS) too, as there is no rule that supports its negation.

As shown in the example above, CDL may deal with several of the challenges
of Ambient Intelligence environments, such as uncertainty, ambiguity, and erro-
neous data. There are still, though, some questions that need to be addressed in
order to fully deploy CDL in real environments: how do the devices actually de-
tect and communicate with each other? and how can we achieve dynamicity and
adaptability? In the next sections, we describe how we addressed such questions
by integrating CDL in the software platform of Kevoree.



4 Kevoree - A component based software platform

On the one hand, in Ambient Assisted Living (AAL), systems need to be adapted
to users preferences and contexts. They also need to combine various data and
reason about it, but the imperfect nature of context makes this task very chal-
lenging. Returning to our use case, the HCS receives data from different devices,
and many situations may occur causing the data to be erroneous, e.g., Annette
may have left her health bracelet next to her bed instead of wearing it, or the
battery capability may be weak and preventing the bracelet from transmitting
any data.

On the other hand, CDL allows to manage uncertainty and reason about
it. The problem remains to apply such theoretical tools to the AAL domain in
order to solve the very concrete challenges affecting patients. In this section,
we present the Kevoree environment, which we use to address such issues by
implementing the CDL reasoning model. This is illustrated in Figure 2.

Fig. 2. Kevoree bridges the AAL needs to the theoretical model of CDL.

4.1 Kevoree: Modeling Framework and Components

Kevoree [7] is an open-source environment that provides means to facilitate the
design and deployment of Distributed Dynamically Adaptive Systems, taking
advantage of Models@Runtime [12] mechanisms throughout the development
process.

This development platform is made of several tools, among which the Kevoree
Modeling Framework (KMF) [13], a model editor (to assemble components to
create an application), and several runtime environments, from Cloud to JavaSE
or Android platforms. The component model of Kevoree defines several concepts.
The rest of this section describes the most interesting ones in relation to the con-
tent of this paper.

Fig. 3. A component in-
stance, inside the node in-
stance on which it exe-
cutes

The Node (in grey in figure 3) is a topological rep-
resentation of a Kevoree runtime. There exist differ-
ent types of nodes (e.g.: JavaSE, Android, etc.) and a
system can be composed of one, or several distributed
heterogeneous instances of execution nodes.

Component instances are deployed and run on a
node instance, as presented on figure 3. Components
may also be of different types, and one or more, het-
erogeneous or not, component instances may run on



a single node. Components declare Ports (rounds on left and right sides of the
component instance) for provided and required services, and input and output
messages. The ports are used to communicate with other components of the
system.

Fig. 4. An in-
stance of Group
on top, of Chan-
nel on the bot-
tom

Groups (top shape in figure 4) are used to share models
(at runtime) between execution platforms (i.e. nodes). There
are different types of Groups, each of which implements a dif-
ferent synchronization / conciliation / distribution algorithm.
Indeed, as the model shared is the same for all the nodes,
there may be some concurrent changes on the same model,
that have to be dealt with.

Finally (for the scope of this paper), Channels (bottom
shape in figure 4) handle the semantics of a communication
link between two or more components. In other words, each
type of channel implements a different means to transport a
message or a method call from component A to component B,
including local queued message list, TCP/IP sockets connec-
tions, IMAP/SMTP mail communications, and various other
types of communication.

4.2 Kevoree Critical Features

Kevoree appears to be an appropriate choice to provide solutions for the de-
velopment of Ambient Intelligence systems, as it can deal with their dynamic
nature. In such systems, agents are often autonomous, reactive and proactive in
order to collaborate and fulfil tasks on behalf of their users.

In Kevoree, an agent is represented as a node that hosts one or more compo-
nent instances. The node is responsible for the communication with other nodes
by making use of the synchronization Group. Some group types implement al-
gorithms with auto-discovery capabilities, making nodes and their components
dynamically appear in the architecture model of the overall system. The fact
that a new node appears in the model means that an agent is reachable, but it
does not necessarily mean that it participates in any interaction. The component
instances of a node provide the services for the agent. Therefore, for an agent to
take part in a collaborative work, the ports of the component instances it hosts
have to be connected to some ports of other agents’ components.

Some features of Kevoree make it particularly suitable for our needs. First,
it enables the implementation, deployment and management of heterogeneous
entities as independent nodes. Second, it uses communication channels to enable
the exchange of messages among the distributed components. Third, it offers a
common and shared representation model for different types of nodes. Finally,
it is endowed with adaptive capabilities and auto-discovery, which fit with the
open and dynamic nature of AmI environments.

In the next section, we detail how we exploit the features of Kevoree and
integrate them with CDL to create our AAL platform.



5 The AAL Platform

In this section, we explain how CDL and Kevoree are integrated in our AAL
platform. We should note that the parts of CDL, which were not directly mapped
to existing elements Kevoree, were implemented in Java.

5.1 Query Component

In our platform, the notion of context, as this is described in Section 3, is imple-
mented by a new component type that we developed, called Query Component.
This component has two inputs: Console In and Query In, and two outputs:
Console out and Query Out. The Query Component has three properties: a
Name, an initial preference address and an initial knowledge base address. In
Kevoree, each instance must have a unique name. In our platform, we use this
unique name to specify the sender or the recipient of a query. The preference
address and the knowledge base address contain the addresses of the files to be
loaded when the component starts. The knowledge base file contains the rule
set of a context, while the preference file contains the preference order of the
context implemented as a list.

Each component has two console (in/out) and two query (in/out) ports. The
console input port is used to send commands to the component, e.g. to update
its knowledge base or change its preference order. The outputs of the commands
are sent out to the console output port. The query in/out ports are used when a
component is sending/receiving queries to/from other components. Queries are
sent via the “Query out” port and responses are received via “Query In”.

Internally, the Query Component has some private variables, which represent
its knowledge base, the preference order and a list of query servant threads
currently running on it. When the component receives a new query, it creates
a new query servant thread dedicated to solve the query and adds it to the list
of currently running query threads. When this thread reports back the result of
the query, it is killed and removed from the list.

5.2 Query Servant

When a query servant thread is created, it is always associated with an ID and
with the query containing the literal to be solved, and it is added to the list
of running threads of the query component. In accordance with the P2P DR
algorithm that we described in Section 3, the query servant model works as
follows:

1. The first phase consists of trying to solve the query locally using the local
knowledge base of the query component. If a positive/negative truth value
is derived locally, the answer is returned and the query servant terminates.

2. The second phase consists of enumerating the rules in the knowledge base
that support the queried literal as their conclusion. For each such rule, the
query servant initiates a new query for each of the literals that are in the body



of the rule. For foreign literals, the queries are dispatched to the appropriate
remote components. After initiating the queries, the query servant goes into
an idle state through the java command “wait()”.

3. When responses are received, the query servant thread is notified. Phase two
is repeated again, but this time using the rules that support the negation of
the queried literal.

4. The last step is to resolve the conflict by comparing the Supportive Sets
of the rules that support the queried literals with the Supportive Sets of
the rules that support its negation using the preference order. The result is
reported back to the query component.

5.3 Query class and loop detection mechanism

The query Java class that we developed for our platform has the following at-
tributes: the queried literal, the name of the component that initiated this query
(query owner), the name of the component to which the query is addressed
(query recipient), the id of the query servant thread that is responsible for solv-
ing this query, a set of supportive sets, and a list that represents the history of
the query. The history is used to track back to the origin of the query by a loop
detection mechanism, which we have integrated in P2P DR.

As P2P DR is a distributed algorithm, we cannot know a-priori whether a
query will initiate an infinite loop of messages. The loop detection mechanism
that we developed detects and terminates any infinite loops. The simple case is
when a literal (ci : a) in component Ci depends on literal (ck : b) of component
Ck, and vice-versa. The loop detection mechanism works as follows: each time
the query servant inquires about a foreign literal to solve the current query, it
first checks that the foreign literal in question does not exist in the history of
the current query, and if not, it generates a new query for the foreign literal by
integrating the history of the current query into the history of the new one. This
way, a query servant is only allowed to inquire about new literals.

5.4 Running example

Applying the above methodology on the running example described in section
2, we created 5 Query Component instances, each one representing one of the
devices or elements of the scenario: the sms module, the bracelet, the medical
profile, the ARM and the Home Care System. According to the scenario, the sms
module must determine whether to send messages to the neighbors according to
a predefined set of rules. Using a console component of Kevoree that we attached
to the sms module, we were able to initiate queries on the sms module.

Figure 5 shows our experimental setup, which involves the 5 query compo-
nents and the console component connected to the sms module (FakeConsole).
Note that, all query input and output ports of the query components are con-
nected to each other via the same message channel called queryChannel, to allow
any component to communicate and send queries to any other component.



Fig. 5. The running example implemented, a snapshot of the Kevoree Editor.

File Name File contents

smsModuleKB.txt M1: (hcs:emergency) → (sms:dispatchSMS)

BraceletKB.txt L1: → (br:normalPulse)

MedProfileKB.txt L1: → (med:proneToHA)

ArmKB.txt L1: → (arm:lyingOnFloor)

HCSKB.txt M1: (br:normalPulse) ⇒ ¬(hcs:emergency)

M2: (arm:lyingOnFloor), (med:proneToHA) ⇒ (has:emergency)

HCSPref.txt med, arm, br

Table 1. Initialization of the components of the running example

Before pushing the model from the Kevoree editor to the Kevoree runtime
(i.e.: the node that will host the instances), we setup the properties of the com-
ponents to initialize their knowledge bases and preference orders as described
in Table 1, and according to the CDL representation model that we present
in Section 3. For instance, the sms component is initiated with a knowledge
base containing one mapping rule (M1) that states that if (hcs : emergency)
of hcs is true, then (sms : dispatchSMS) of the sms module will also be true.
HCSPref.txt contains the preference order of hcs, according to which the infor-
mation imported by the medical profile is preferred to that coming from the
ARM, which is in turn preferred to that coming from the bracelet.

After pushing the model to the Kevoree runtime, a console appears allow-
ing us to interact with the sms module. We initiate a query about (sms :
dispatchSMS), and we get true as a response. In fact, what happens in the
back-end is that a query servant starts on the sms module to solve the query.
The query servant initiates, then, a new query for (hcs : emergency). In the



knowledge base of hcs, there is one rule supporting this literal, and another one
supporting its negation. hcs evaluates both rules and resolves the conflict using
its preference order. Finally, it sends back the result of the query to the first
query servant, which in turn computes and returns a positive truth value for
(sms : dispatchSMS). The full interaction is displayed in figure 6.

Fig. 6. Execution of the running example.

5.5 Limitations

Our platform still has some technical limitations. As it deals with real com-
ponents, we must assume limited memory, battery, computation and power re-
sources. These limitations vary widely from a component to another depending
on the nature of the component, its size and its technical complexity. For the
current implementation, we have limited the knowledge base size to a maximum
of 500 literals and rules. We have also limited the time-out for 10 seconds, so that
if a component does not receive an answer to its query within 10 seconds, the
corresponding thread server will send a time-out response, and the query will
automatically expire. This limits the maximum number of hops that a query
can make before it expires, which in turn limits the communication resources,
as some communication channel might not be free (over sms for example). With
the current settings, we can easily implement small-scale AAL scenarios. How-
ever, dealing with more complex scenarios requires a more scalable methodology.
To address such needs, we are already working on solutions that offer trade-offs
between computation time, memory and communication between devices, and
we are redesigning our algorithms so that they able to adapt between different
strategies depending on the available resources.



6 Related Work

Rule-based approaches offer several benefits with respect to reasoning about
context in Ambient Intelligence environments, such as simplicity and flexibility,
formality, expressivity, modularity, high-level abstraction and information hid-
ing [14]. Various logics have been proposed so far for such purposes including:
First Order Logic [15, 16], Logic Programming [17, 18], Answer Set Programming
[19] and Defeasible Logic [20]. Classical reasoning approaches (e.g. First Order
Logic) are based on the assumption of perfect knowledge of context, which, as we
explained in Section 1, is not valid in Ambient Intelligence environments. Non-
monotonic approaches, including the one that we propose in this paper, enable
reasoning with imperfect context, adding though additional complexity overhead
to the reasoning process. Although the complexity of the algorithm that we use
for query evaluation is exponential [3], it is among our future plans to design
new algorithms that will exploit the linear complexity of Defeasible Logic.

Although Ambient Intelligence environments are distributed by nature, all
systems that are cited above are based on centralized architectures: a central
entity is responsible for collecting relevant context data from all sensors and
devices operating in the same environment, and for conducting the contextual
reasoning tasks. The shared memory and blackboard models that were used by
other systems (e.g [21–23]) are also based on the assumption of a central place
where all relevant data is collected and processed. However, in such environments
context changes may be very frequent, devices may join or disconnect at random
times and without prior notice, while wireless communications are unreliable and
restricted by the range of the transmitters. Moreover, privacy restrictions may
be applied by the users, according to which part of the data stored in a device
must remain local. Therefore, a totally distributed model, such as the one that
we propose here, fits better with such requirements and needs.

7 Conclusion

In this paper, we address some of the challenges imposed by the special char-
acteristics and requirements of intelligent environments to the reasoning pro-
cesses of Ambient Intelligence systems. Such systems must enable heterogeneous
entities, which operate in open and dynamic environments, to collectively rea-
son with imperfect context information. We build on previous work, in which
we introduced Contextual Defeasible Logic as a contextual reasoning model to
address most of these challenges using the concepts of context, mappings and
contextual preferences. In this paper, we first introduce the implementation of
the logic in Kevoree, a component-based software platform for Distributed Dy-
namically Adaptive Systems. Second, we present an Ambient Assisted Living
(AAL) scenario, which we use as a running example to present the main aspects
of our platform. We describe how we implemented the reasoning model of CDL
in Kevoree, and explain how the capabilities of Kevoree are exploited to over-
come several technical issues, such as communication, information exchange and



detection. Third, we discuss the additional technical issues that arise from the
deployment of CDL in real environments, and propose ways to resolve them.
Finally, we emphasize that we provide a platform, which anyone may use to test
and implement scenarios from any field of Ambient Intelligence.

In the future, we plan to extend CDL to support shared pieces of knowledge,
which are directly accessible by all system contexts, and implement this exten-
sion in Kevoree using its groups feature (see section 4). This will enable different
devices operating in an Ambient Intelligence environment to maintain a com-
mon system state. We also plan to develop and implement reactive (bottom-up)
reasoning algorithms, which will be triggered by certain events or changes in the
environment. Such types of algorithms fit better with the adaptive nature of Am-
bient Intelligence systems, and may be particularly useful in AAL contexts. We
will also study the integration of a low-level context layer in our platform, which
will process the available sensor data and feed the rule-based reasoning algo-
rithms with appropriate values for the higher-level predicates. For this layer, we
will investigate the Complex Event Processing (CEP) methodology [24], which
combines data from multiple sources to infer higher-level conclusions, and we
will build on top of previous works that study the integration of CEP and reac-
tion rules [25]. We will test and evaluate all our deployments and extensions to
our platform in the Internet of Things Laboratory of the Interdisciplinary Cen-
tre for Security, Reliability and Trust (SnT) in Luxembourg. It is also among
our plans to use our platform to evaluate tradeoffs among requirements of AAL
systems, e.g., privacy, security, usability/conviviality and performance. Finally,
we plan to investigate how the same reasoning methods may be applied to other
application areas with similar requirements, such as the Semantic Web and Web
Social Networks.

References

1. Cook, D.J., Augusto, J.C., Jakkula, V.R.: Ambient intelligence: Technologies,
applications, and opportunities. Pervasive and Mobile Computing (2009) 277–298

2. Henricksen, K., Indulska, J.: Modelling and Using Imperfect Context Informa-
tion. In: Proceedings of PERCOMW ’04, Washington, DC, USA, IEEE Computer
Society (2004) 33–37

3. Bikakis, A., Antoniou, G.: Defeasible Contextual Reasoning with Arguments in
Ambient Intelligence. IEEE Trans. on Knowledge and Data Engineering 22(11)
(2010) 1492–1506

4. Bikakis, A., Antoniou, G., Hassapis, P.: Strategies for contextual reasoning with
conflicts in Ambient Intelligence. Knowledge and Information Systems 27(1) (2011)
45–84

5. Moawad, A., Efthymiou, V., Caire, P., Nain, G., Le Traon, Y.: Introducing con-
viviality as a new paradigm for interactions among IT objects. In: Proceedings
of the Workshop on AI Problems and Approaches for Intelligent Environments.
Volume 907., CEUR-WS.org (2012) 3–8

6. Efthymiou, V., Caire, P., Bikakis, A.: Modeling and evaluating cooperation in
multi-context systems using conviviality. In: Proceedings of BNAIC 2012 The
24th Benelux Conference on Artificial Intelligence. (2012) 83–90



7. Fouquet, F., Barais, O., Plouzeau, N., Jézéquel, J.M., Morin, B., Fleurey, F.: A
Dynamic Component Model for Cyber Physical Systems. In: 15th International
ACM SIGSOFT Symposium on Component Based Software Engineering, Berti-
noro, Italie (July 2012)

8. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation results
for defeasible logic. ACM Transactions on Computational Logic 2(2) (2001) 255–
287

9. Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: how we can do
without modal logics. Artificial Intelligence 65(1) (1994)

10. Ghidini, C., Giunchiglia, F.: Local Models Semantics, or contextual reason-
ing=locality+compatibility. Artificial Intelligence 127(2) (2001) 221–259

11. Bikakis, A., Antoniou, G.: Partial preferences and ambiguity resolution in contex-
tual defeasible logic. In: LPNMR. (2011) 193–198

12. Morin, B., Barais, O., Nain, G., Jezequel, J.M.: Taming dynamically adaptive sys-
tems using models and aspects. In: Proceedings of the 31st International Confer-
ence on Software Engineering. ICSE ’09, Washington, DC, USA, IEEE Computer
Society (2009) 122–132

13. Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O., Plouzeau, N., Jézéquel,
J.M.: An Eclipse Modelling Framework Alternative to Meet the Models@Runtime
Requirements. In: Models 2012, Innsbruck, Autriche (October 2012)

14. Bikakis, A., Antoniou, G.: Rule-based contextual reasoning in ambient intelligence.
In: RuleML. (2010) 74–88

15. Ranganathan, A., Campbell, R.H.: An infrastructure for context-awareness based
on first order logic. Personal Ubiquitous Comput. 7(6) (2003) 353–364

16. Gu, T., Pung, H.K., Zhang, D.Q.: A Middleware for Building Context-Aware
Mobile Services. In: Proceedings of the IEEE Vehicular Technology Conference
(VTC 2004), Milan, Italy (May 2004)

17. Toninelli, A., Montanari, R., Kagal, L., Lassila, O.: A Semantic Context-Aware
Access Control Framework for Secure Collaborations in Pervasive Computing En-
vironments. In: Proc. of 5th International Semantic Web Conference. (November
2006) 5–9

18. Agostini, A., Bettini, C., Riboni, D.: Experience Report: Ontological Reasoning for
Context-aware Internet Services. In: PERCOMW ’06: Proceedings of the 4th an-
nual IEEE international conference on Pervasive Computing and Communications
Workshops, Washington, DC, USA, IEEE Computer Society (2006)

19. Mileo, A., Merico, D., Pinardi, S., Bisiani, R.: A logical approach to home health-
care with intelligent sensor-network support. Comput. J. 53(8) (2010) 1257–1276

20. Antoniou, G., Bikakis, A., Karamolegou, A., Papachristodoulou, N., Stratakis, M.:
A context-aware meeting alert using semantic web and rule technology. Interna-
tional Journal of Metadata Semantics and Ontologies 2(3) (2007) 147–156

21. Khushraj, D., Lassila, O., Finin, T.: sTuples: Semantic Tuple Spaces. In: First
Annual International Conference on Mobile and Ubiquitous Systems: Networking
and Services (MobiQuitous04). (August 2004) 267–277

22. Krummenacher, R., Kopecký, J., Strang, T.: Sharing Context Information in Se-
mantic Spaces. In: OTM Workshops. (2005) 229–232

23. Korpipaa, P., Mantyjarvi, J., Kela, J., Keranen, H., Malm, E.J.: Managing Context
Information in Mobile Devices. IEEE Pervasive Computing 02(3) (2003) 42–51

24. Luckham, D.C.: The power of events - an introduction to complex event processing
in distributed enterprise systems. ACM (2005)

25. Paschke, A., Vincent, P., Springer, F.: Standards for complex event processing and
reaction rules. In: RuleML America. (2011) 128–139


