57 research outputs found
Semantic object processing is modulated by prior scene context
Objects that are congruent with a scene are recognised more efficiently than objects that are incongruent. Further, semantic integration of incongruent objects elicits a stronger N300/N400 EEG component. Yet, the time course and mechanisms of how contextual information supports access to semantic object information is unclear. We used computational modelling and EEG to test how context influences semantic object processing. Using representational similarity analysis, we established that EEG patterns dissociated between objects in congruent or incongruent scenes from around 300 ms. By modelling the semantic processing of objects using independently normed properties, we confirm that the onset of semantic processing of both congruent and incongruent objects is similar (∼150 ms). Critically, after ∼275 ms, we discover a difference in the duration of semantic integration, lasting longer for incongruent compared to congruent objects. These results constrain our understanding of how contextual information supports access to semantic object information
Optimized high gradient magnetic separation for isolation of Plasmodium-infected red blood cells
<p>Abstract</p> <p>Background</p> <p>Highly purified infected red blood cells (irbc), or highly synchronized parasite cultures, are regularly required in malaria research. Conventional isolation and synchronization rely on density and osmotic fragility of irbc, respectively. High gradient magnetic separation (HGMS) offers an alternative based on intrinsic magnetic properties of irbc, avoiding exposure to chemicals and osmotic stress. Successful HGMS concentration in malaria research was previously reported using polymer coated columns, while HGMS depletion has not been described yet. This study presents a new approach to both HGMS concentration and depletion in malaria research, rendering polymer coating unnecessary.</p> <p>Methods</p> <p>A dipole magnet generating a strong homogenous field was custom assembled. Polypropylene syringes were fitted with one-way stopcocks and filled with stainless steel wool. Rbc from <it>Plasmodium falciparum </it>cultures were resuspended in density and viscosity optimized HGMS buffers and HGMS processed. Purification and depletion results were analysed by flow cytometer and light microscopy. Viability was evaluated by calculating the infection rate after re-culturing of isolates.</p> <p>Results</p> <p>In HGMS concentration, purity of irbc isolates from asynchronous cultures consistently ranged from 94.8% to 98.4% (mean 95.7%). With further optimization, over 90% of isolated irbc contained segmented schizonts. Processing time was less than 45 min. Reinfection rates ranged from 21.0% to 56.4%. In HGMS depletion, results were comparable to treatment with sorbitol, as demonstrated by essentially identical development of cultures.</p> <p>Conclusion</p> <p>The novel HGMS concentration procedure achieves high purities of segmented stage irbc from standard asynchronous cultures, and is the first HGMS depletion alternative to sorbitol lysis. It represents a simple and highly efficient alternative to conventional irbc concentration and synchronization methods.</p
Oleic Acid Biosynthesis in Plasmodium falciparum: Characterization of the Stearoyl-CoA Desaturase and Investigation as a Potential Therapeutic Target
BACKGROUND:Plasmodium falciparum parasitization of erythrocytes causes a substantial increase in the levels of intracellular fatty acids, notably oleic acid. How parasites acquire this monounsaturated fatty acid has remained enigmatic. Here, we report on the biochemical and enzymatic characterization of stearoyl-CoA desaturase (SCD) in P. falciparum. METHODOLOGY/PRINCIPAL FINDINGS:Metabolic labeling experiments allowed us to demonstrate the production of oleic acid from stearic acid both in lysates of parasites incubated with [(14)C]-stearoyl-CoA and in parasite-infected erythrocytes labeled with [(14)C]-stearic acid. Optimal SCD activity was detected in schizonts, the stage of maximal membrane synthesis. This activity correlated with a late trophozoite stage-specific induction of PFE0555w transcripts. PFE0555w harbors a typical SCD signature. Similar to mammalian SCDs, this protein was found to be associated with the endoplasmic reticulum, as determined with PFE0555w-GFP tagged transgenic P. falciparum. Importantly, these parasites exhibited increased rates of stearic to oleic acid conversion, providing additional evidence that PFE0555w encodes the plasmodial SCD (PfSCD). These findings prompted us to assess the activity of sterculic acid analogues, known to be specific Delta9-desaturase inhibitors. Methyl sterculate inhibited the synthesis of oleic acid both with parasite lysates and infected erythrocytes, most likely by targeting PfSCD. This compound exhibited significant, rapid and irreversible antimalarial activity against asexual blood stages. This parasiticidal effect was antagonized by oleic acid. CONCLUSION/SIGNIFICANCE:Our study provides evidence that parasite-mediated fatty acid modification is important for blood-stage survival and provides a new strategy to develop a novel antimalarial therapeutic based on the inhibition of PfSCD
Promiscuous Binding in a Selective Protein: The Bacterial Na+/H+ Antiporter
The ability to discriminate between highly similar substrates is one of the remarkable properties of enzymes. For example, transporters and channels that selectively distinguish between various solutes enable living organisms to maintain and control their internal environment in the face of a constantly changing surrounding. Herein, we examine in detail the selectivity properties of one of the most important salt transporters: the bacterial Na/H antiporter. Selectivity can be achieved at either the substrate binding step or in subsequent antiporting. Surprisingly, using both computational and experimental analyses synergistically, we show that binding per se is not a sufficient determinant of selectively. All alkali ions from Li to Cs were able to competitively bind the antiporter's binding site, whether the protein was capable of pumping them or not. Hence, we propose that NhaA's binding site is relatively promiscuous and that the selectivity is determined at a later stage of the transport cycle
Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development
Amino acids generated from the catabolism of hemoglobin by intra-erythrocytic malaria parasites are not only essential for protein synthesis but also function in maintaining an osmotically stable environment, and creating a gradient by which amino acids that are rare or not present in hemoglobin are drawn into the parasite from host serum. We have proposed that a Plasmodium falciparum M17 leucyl aminopeptidase (PfLAP) generates and regulates the internal pool of free amino acids and therefore represents a target for novel antimalarial drugs. This enzyme has been expressed in insect cells as a functional 320-kDa homo-hexamer that is optimally active at neutral or alkaline pH, is dependent on metal ions for activity, and exhibits a substrate preference for N-terminally exposed hydrophobic amino acids, particularly leucine. PfLAP is produced by all stages in the intra-erythrocytic developmental cycle of malaria but was most highly expressed by trophozoites, a stage at which hemoglobin degradation and parasite protein synthesis are elevated. The enzyme was located by immunohistochemical methods and by transfecting malaria cells with a PfLAP-green fluorescent protein construct, to the cytosolic compartment of the cell at all developmental stages, including segregated merozoites. Amino acid dipeptide analogs, such as bestatin and its derivatives, are potent inhibitors of the protease and also block the growth of P. falciparum malaria parasites in culture. This study provides a biochemical basis for the antimalarial activity of aminopeptidase inhibitors. Availability of functionally active recombinant PfLAP, coupled with a simple enzymatic readout, will aid medicinal chemistry and/or high throughput approaches for the future design/discovery of new antimalarial drugs
Recommended from our members
Semantic object processing is modulated by prior scene context
We typically encounter objects in a context, for example, a sofa in a living room or a car in the street, and this context influences how we recognize objects. Objects that are congruent with a scene context are recognised faster and more accurately than objects that are incongruent. Furthermore, objects that are incongruent with a scene elicit a stronger negativity of the N300/N400 EEG component compared to objects that are congruent with the scene. However, exactly how context modulates access to semantic object information is unknown. Here, we used a modelling-based approach with EEG to directly test how context influences the processing of semantic object information. Using representational similarity analysis, we first asked whether EEG patterns dissociated objects in congruent or incongruent scenes, finding that representational differences between the conditions emerged towards 300 ms. Next, we tested the relationship between EEG patterns and a semantic model based on property norms, revealing that the processing of semantic information for both conditions started around 150 ms, while after around 275 ms, semantic effects were stronger and lasted longer for objects in incongruent scenes compared to objects in congruent scenes. The timing of these effects overlapped with known N300/N400, suggesting previous congruency effects might be explained by differences in processing semantic object information. This suggests that scene contexts can provide a prior expectation about what kind of objects could appear, which might allow for more efficient semantic processing if the object is congruent with the scene, and extended semantic effects for incongruent objects
Recommended from our members
Semantic object processing is modulated by prior scene context
Objects that are congruent with a scene are recognised more efficiently than objects that are incongruent. Further, semantic integration of incongruent objects elicits a stronger N300/N400 EEG component. Yet, the time course and mechanisms of how contextual information supports access to semantic object information is unclear. We used computational modelling and EEG to test how context influences semantic object processing. Using representational similarity analysis, we established that EEG patterns dissociated between objects in congruent or incongruent scenes from around 300 ms. By modelling semantic processing of objects using independently normed properties, we confirm that the onset of semantic processing of both congruent and incongruent objects is similar (~150 ms). Critically, after ~275 ms, we discover a difference in the duration of semantic integration, lasting longer for incongruent compared to congruent objects. These results constrain our understanding of how contextual information supports access to semantic object information
- …