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REGULAR ARTICLE

Semantic object processing is modulated by prior scene context
Alexandra Krugliak a, Dejan Draschkow b,c, Melissa L.-H. Võ d and Alex Clarke a

aDepartment of Psychology, University of Cambridge, Cambridge, UK; bDepartment of Experimental Psychology, University of Oxford, Oxford,
UK; cOxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford,
Oxford, UK; dDepartment of Psychology, Goethe University Frankfurt, Frankfurt, Germany

ABSTRACT
Objects that are congruent with a scene are recognised more efficiently than objects that are
incongruent. Further, semantic integration of incongruent objects elicits a stronger N300/N400
EEG component. Yet, the time course and mechanisms of how contextual information supports
access to semantic object information is unclear. We used computational modelling and EEG to
test how context influences semantic object processing. Using representational similarity
analysis, we established that EEG patterns dissociated between objects in congruent or
incongruent scenes from around 300 ms. By modelling the semantic processing of objects using
independently normed properties, we confirm that the onset of semantic processing of both
congruent and incongruent objects is similar (∼150 ms). Critically, after ∼275 ms, we discover a
difference in the duration of semantic integration, lasting longer for incongruent compared to
congruent objects. These results constrain our understanding of how contextual information
supports access to semantic object information.
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Introduction

In our daily lives, we easily recognise the objects around
us. Yet, in certain situations, we expect to see some
objects more than others. For example, when walking
down a street, we might expect to encounter a car but
not an elephant. But if we visit a zoo, we would be
much more likely to encounter an elephant in an enclo-
sure than a car. In both scenarios, we recognise the
object as a car and an elephant, however, the context
in which we see these objects influences the way we per-
ceive and respond to them. Objects that are congruent
with their environment are recognised faster and more
accurately than objects that are incongruent (Bar,
2004; Biederman et al., 1982; Davenport & Potter, 2004;
Greene et al., 2015; Oliva & Torralba, 2007; Palmer,
1975). This is also reflected in neural processing, in
that incongruent objects induce a stronger negativity
of the N300/N400 EEG components than congruent
objects (e.g. Draschkow et al., 2018; Ganis & Kutas,
2003; Lauer et al., 2018; 2020; Mudrik et al., 2010; 2014;
Võ & Wolfe, 2013). Such congruency effects for stimuli
mismatching a context have been reported not only
for objects but for a variety of stimuli, like words at the
end of a sentence (e.g. Kutas & Hillyard, 1980), images
in a preceding sentence context (e.g. Ganis et al.,

1996), or scene images preceded by a verbal cue of a
scene category (Kumar et al., 2021), indicating that
during the N300/N400 interval, semantic information
becomes available and is integrated into the context
(for a review see Kutas & Federmeier, 2011).

Much of what we do know about the semantic pro-
cessing of visual objects comes from research where
objects are presented isolated from the background
or in a stream of unconnected events. This line of
research indicates that in the first ∼150 ms after the
object appears, low- and middle-level object features
are extracted, mostly in a feedforward fashion along
the ventral visual stream (Cichy et al., 2016; DiCarlo
et al., 2012; Lamme & Roelfsema, 2000). More
complex visual features and semantic features are pro-
cessed at later latencies, beginning after 150–200 ms,
supported by recurrent dynamics within the ventral
temporal lobes (Bankson et al., 2018; Chan et al.,
2011; Clarke, 2019; Clarke et al., 2011, 2018; Kietzmann
et al., 2019; Poch et al., 2015). In agreement with this
object processing timeline, the effects of object-scene
congruency on the N300/N400 EEG components occur
at a similar time as semantic feature effects for single
objects, which would allow for context to modulate
object perception.
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Previous EEG research suggests the scene context can
directly modulate the timing of object processing. For
instance, Truman and Mudrik (2018) reported that
when intact and scrambled objects were shown
embedded in congruent or incongruent scenes, EEG
signals to intact objects in congruent contexts diverged
from EEG signals to scrambled images within the N300
time window, while EEG signals to intact objects in
incongruent contexts diverged in the N400 time
window. They suggest that object identification is
delayed when objects are in incongruent scenes and
integration of the object and scene is enhanced. While
this might suggest differences in the timing and dur-
ation of semantic access for objects in congruent and
incongruent scenes, the research so far is limited in
answering the question of how semantic object infor-
mation is represented in these different situations, in
terms of the timing of semantic activation and the
nature of this semantic information. Contrasts between
congruent and incongruent conditions are well suited
to exploring differences in processing between these
conditions, while understanding how we access seman-
tic information for objects in different contexts is better
aided through approaches that measure semantic pro-
cessing individually for each of these conditions. By
tracking the semantic processing of objects in congruent
scenes, separately from the semantic processing of
objects in incongruent scenes, we can more directly
test for differences and similarities in how semantic
information is accessed.

Three plausible scenarios for how semantic access is
modulated by a prior scene context are (1) that semantic
object information is accessed faster for objects in con-
gruent compared to incongruent environments,
meaning that later processing of objects in incongruent
environments leads to a N300/N400 congruency effect,
(2) semantic access is initiated at the same time in
both conditions, but continues for longer in the incon-
gruent case, with the additional semantic activation
related to congruency effects, or (3) that semantic
access is initiated at the same time and for the same dur-
ation for both congruent and incongruent conditions,
and differences in the magnitude of semantic access
relate to congruency effects.

Here, we re-analysed EEG data by Draschkow and col-
leagues (2018) to test the hypothesis that neural effects
of congruency on the N300/N400 components are
driven by differences in accessing semantic object infor-
mation, by combining computational models with Rep-
resentational Similarity Analysis (RSA; Kriegeskorte
et al., 2008) – a methodology that allows testing
specific hypotheses about what object features contrib-
ute to neural signals during object processing (Bankson

et al., 2018; Cichy et al., 2016; Clarke et al., 2018). During
RSA, the similarity of neural responses between individ-
ual objects is calculated and summarised in a Represen-
tational Dissimilarity Matrix (RDM). These RDMs of brain
signals can be calculated at each point in time, and
tested against a second set of RDMs that represent our
predictions for why objects might be more or less
similar to one another (e.g. due to congruency or seman-
tic similarity). A significant relationship between the
neural RDMs and RDMs of our predictions (or models),
suggests that the predicted information is currently
being represented in neural signals. For example,
Clarke and colleagues (2018) demonstrated this
approach using a model of semantics based on features
from a property norming study (Devereux et al., 2014),
which was related to MEG signals. The property norms
were obtained by asking participants to name features
associated with concept words, resulting in a collection
of 3026 different features that capture the semantic rep-
resentations of individual concepts (e.g. a car has the
features “has wheels”, “has a driver” and “made of
metal” but not the features “is edible”, “has wings”),
which then allows an examination of the relationship
between neural responses to single objects and the
semantics defined by the norms. Clarke and colleagues
(2018) reported the semantic model, based on such
property norms, related to brain activity peaking
around 250 ms after object onset – a latency similar to
the onset of the N300/N400 component. Using a
similar model here, based on the same independently
normed semantic features as used by Clarke and col-
leagues (2018), provides not only the intriguing oppor-
tunity to directly test if context indeed modulates
semantics, but also how it effects the temporal proces-
sing of objects in congruent and incongruent settings
independently, adjudicating between the three scen-
arios we set out above.

In the current EEG data set, participant viewed images
of scenes where a cue indicated the location where
either a congruent or incongruent object would
appear. We extracted similarity of neural responses to
objects and related them to different models. First, we
used a simple congruency model that distinguishes
between congruent and incongruent contexts, to estab-
lish when representational differences in the EEG signals
emerge that suggests a dissociation of processing
between the conditions. Then we modelled the EEG
data with a semantic model based on property norms
that describes the objects in terms of semantic features,
to specifically test how congruency impacts the time
course of processing semantic object information, and
how this is different depending on the contextual con-
gruency between the object and the scene.
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Methods

We re-analysed EEG data reported by Draschkow and col-
leagues (2018). The data is freely available (https://github.
com/DejanDraschkow/n3n4). Here we provide a short
summary of the main aspects of the study design cover-
ing participants, procedure, EEG recording and pre-pro-
cessing, as well as the specifications of our RSA analyses.

Participants and procedure

Forty healthy participants viewed 152 scene images that
were presented with either a semantically congruent or
incongruent object (76 trials per condition). Each scene
was paired with a congruent and an incongruent
object, but participants saw each scene only once with
either the congruent or the incongruent object (the con-
ditions were counterbalanced across participants). At
the beginning of each trial, a scene was presented for
500 ms, then a red dot appeared indicating the position
where the object would appear. After 500–530 ms, the
object was presented in the cued location of the scene
and remained on the screen for 2000ms (Figures 1 and
Figure 2(A)). The task was to report exact repetitions of
scenes and objects (the repetition trials were excluded
from subsequent analysis).

EEG recording and pre-processing

EEG data was recorded with 64 active Ag/AgCl electro-
des (Brain Products, GmhB), with a sampling rate of
1000 Hz. Data were down-sampled to 200 Hz, filtered

between 0.1 and 40 Hz, and eye and muscle artefacts
were removed with independent component analysis.
Epochs of 1100 ms were created, from −200 to 900 ms
centred around object onset, then baseline correction
was applied from −200 to 0 ms. We started our analysis
with the epoched data provided by Draschkow and col-
leagues (2018), however, we identified noisy trials by
visual inspection, specifically those trials that contained
high frequency noise or large amplitude signals
beyond the range of normal activity. On average 2.9%
of trials were removed (range 0–24%). All electrodes
were included in the subsequent Representation Simi-
larity Analysis (RSA).

Representational similarity analysis

RSA was used to relate model-based congruency and
semantic similarity between objects to the neural simi-
larity based on EEG data (Figure 2). We computed the
similarity between neural responses to objects at each
moment in time as 1-Pearson correlation between the
EEG signals for each object pair and summarised the
similarity measures in symmetric Representational Dis-
similarity Matrices (RDMs) per time-point. Then, using
Spearman correlation, we related the EEG RDMs to
RDMs that reflect a similarity structure between
objects based on either the congruency or semantic
properties. This method allows to reveal when and for
how long the EEG signals distinguish between objects
based on the contextual congruency or the semantic
properties of those objects.

Figure 1. An example trial showing a scene before a red dot appears to indicate the location the object will appear. The object that
appeared could either be congruent with the scene, in this example a cushion, or incongruent with the scene, in this example a chop-
ping board. Each scene is only shown once to a participant, with either a congruent or incongruent object.
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Congruency model analysis
The congruency model dissociates between objects pre-
sented in congruent and incongruent contexts. We
created participant-specific models because the same
scenes were presented to some participants with a con-
gruent object and to other participants with an incon-
gruent object (counterbalanced across participants).
For each participant, we first assigned each of the 76
congruent scene-object trials a value of 1 and each of
the 76 incongruent scene-object trials a value of 0,
before calculating the Euclidean distance between
each object pair and summarising the results in a
152 × 152 RDM (Figure 2(B)).

From the EEG data, we extracted brain responses to
each object for the time points from −200 ms to 900 ms
in intervals of 5 ms, resulting in 221 time-points. Next,
we calculated the correlation distance between each
object pair at each time-point. This resulted in partici-
pant-specific RDMs at each time-point that summarised
the neural similarity between the objects.

In the following step, we related the congruency
model RDM with the brain response RDMs using Spear-
man correlation resulting in an RSA time-series per par-
ticipant (Figure 2(C)). A random effects analysis assessed
the model fit of the congruency model RDM and the
brain RDMs at each time-point using a t-test against
zero with an alpha of 0.01. To control for multiple com-
parisons across time we used a cluster-mass permu-
tation test to assign p-values to clusters of significant
tests (Maris & Oostenveld, 2007). For each permutation,
the sign of RSA correlation time-series between the
model and brain RDM was randomly flipped for each
participant, before t-tests were performed on the per-
muted data, and the size of the largest cluster added
to the permutation distribution. Finally, the cluster p-
value for clusters in the original data was defined as
the proportion of the 10,000 permutations (plus the
observed cluster mass) that was greater than or equal
to the observed cluster mass.

Semantic model analysis
The semantic model specified the semantic-feature simi-
larity of object concepts basedon apublished set of prop-
erty norms (Devereux et al., 2014). The current version of
the property norms is available from the Centre of
Speech, Language, and the Brain (https://cslb.psychol.
cam.ac.uk/propnorms). The property norms we used
summarised how 826 different concepts related to 3026
different features (e.g. a zebra “has stripes”, “eats grass”
etc), allowingus to represent each concept by a collection
of features that together define the concept (e.g. a zebra
“has legs”, “has stripes”, but does not “live in trees”). We

matched the objects used by Draschkow and colleagues
(2018) with concepts in the property norms. A matching
concept was found for 118 out of 152 objects that were
presented in a congruent context, and for 116 out of
152 objects that were presented in an incongruent
context. Trials containing objects for which no match
could be found were excluded from further analysis. For
the other trials, a semantic similarity space was defined
by calculating the cosine distance between all possible
pairs of objects, separately for objects that were pre-
sented in a congruent context and objects that were pre-
sented in an incongruent context, resulting in two
semantic feature RDMs (Figure 2(B)). The resulting RDM
dimensions differed across participants because while
all participants viewed the same scenes, the scenes
were shown to one half of the participants with a congru-
ent object and to the other half of participants with an
incongruent object. For both groups of participants, the
dimension of the RDM for incongruent trials was 58 ×
58, and the RDM for congruent trials for half the partici-
pants was 57 × 57 and 61 × 61 for the remaining half.

The EEG data of each participant was separated for
congruent and incongruent scene-object trials, before
RDMs per time-point were calculated in the same way
as for the congruency model, except that now two ana-
lyses were performed, one relating the semantic feature
RDM to the brain RDMs for congruent trials, and one
analysis relating the semantic feature RDM to the brain
RDMs for the incongruent trials (Figure 2(C)). Significant
differences between the RSA model fit for congruent
and incongruent context conditions were additionally
assessed with a cluster-based permutation test using
paired sample t-tests (Figure 3).

Results

We combined computational modelling with RSA to test
if congruency effects in N300/N400 EEG components
were driven by semantic object information. First, we
constructed a model of consistency to uncover when
the processing of congruent and incongruent objects
diverged. Then, using a model based on semantic fea-
tures, we investigated the time-course of semantic pro-
cessing of objects that were presented in either
congruent or incongruent contexts.

Congruency model analysis

We first assessed whether neural patterns distinguished
between objects presented in congruent and incongru-
ent environments. RSA analysis of the EEG signals
revealed that the congruency model distinguished
between congruent and incongruent scene-object
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Figure 2. An overview of Representation Similarity Analysis (RSA) that relates brain responses at each time point to the congruency
and semantic information associated with the different trials. (A) Example stimuli showing objects in congruent and incongruent
scenes. (B) Model RDMs for an example participant. For the congruency model analysis all congruent object trials were each assigned
a value of 1 and all incongruent object trials each a value of 0. Then the Euclidean distance between all object-pairs was calculated.
The resulting RDM directly dissociates congruent and incongruent objects. For the semantic model analysis, the congruent and incon-
gruent trials were analysed separately. Each object for which independently normed semantic features were available was assigned a
corresponding semantic feature vector. Then the cosine distance was calculated between the feature vectors of all object-pairs, sep-
arately for consistent and inconsistent trials, resulting in two RDMs that describe the similarity of objects based on semantic prop-
erties. (C) The model RDMs are then statistically related to brain signals. For each object, the EEG response was extracted across
all channels, and at each time-point the similarity between object pairs was calculated using correlation distance. Model RDMs
were then related to these EEG RDMs using Spearman correlation.
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context trials, where we saw a significant relationship
between the congruency model and EEG patterns from
approximately 290–450 ms (cluster p = 0.022; Figure 4
(A), Table 1). The timing of this effect is in line with pre-
vious N300/N400 effects of congruency.

Semantic model analysis

While the congruency effect shows that object proces-
sing and scene information interact, it does not tell us
about how semantic knowledge may be accessed

differentially depending on the scene context. To
address this, we constructed a semantic model based
on semantic features that collectively describe each of
the concepts. Two separate RDMs were created, one
for objects that were presented in a congruent context
and one for objects that were presented in an incongru-
ent context. The model RDMs were then correlated with
the corresponding brain RDMs, i.e. the congruent model
RDM was related to brain activation RDMs to congruent
objects and the incongruent model RDM to brain acti-
vation RDMs to incongruent objects.

Figure 3. Model RDMs tested and EEG RDMs from an example participant at different time points.

Figure 4. RSA results. (A) The consistency model fit shows the similarity based on Spearman correlation between the model RDM and
the EEG RDMs at each time-point. Shaded area shows + - 1 standard error of the mean. The horizontal bar shows a statistically sig-
nificant cluster. (B) The semantic model fit is shown separately for congruent (grey line) and incongruent (black line) conditions. The
horizontal bars show statistically significant clusters for incongruent objects (black solid line) and the difference of semantic model fit
between congruent and incongruent objects (black dotted line). (C) Correlational analysis relating the congruency model to the differ-
ence of semantic model fit between congruent and incongruent objects.
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For congruent objects, although the semantic model
showed no statistically significant relationship to brain
activity, it numerically performed well from around
140 ms to 235 ms (cluster p = 0.06). For incongruent
objects, the semantic model fitted the brain responses
significantly during two clusters, the first cluster includ-
ing time-points around 140 ms to 360 ms (cluster p =
0.005) and a second cluster with time-points between
around 620–765 ms (cluster p = 0.021; Figure 4(B),
Table 1). This might suggest that while semantic
effects in both conditions seem to begin at similar
times, approximately 150 ms after object onset, seman-
tic effects for incongruent objects continue for a
longer period of time. In order to test this, we compared
the two conditions directly. The difference in model-fit
between the two conditions was significant at two clus-
ters, an early cluster including the time-points around
280 ms to 395 ms (cluster p = 0.049) and a second
cluster including the time-points from approximately
600 ms to 870 ms (cluster p = 0.002; Figure 4(B), Table
1). While cluster-based permutation testing does not
allow precise estimation of effect on- and off-sets (Sas-
senhagen & Draschkow, 2019), qualitatively the time-
windows of these clusters overlap with both our
effects of the congruency model RDM, and known con-
gruency effects in the N300/N400 (e.g. Draschkow et al.,
2018; Ganis & Kutas, 2003; Lauer et al., 2018; 2020;
Mudrik et al., 2010; 2014; Võ & Wolfe, 2013), in addition
to a regularly reported later effect coinciding with the
P600 (e.g. Ganis & Kutas, 2003; Mudrik et al., 2010;
Sauvé et al., 2017; Võ & Wolfe, 2013).

Correlation analysis

The model-based analysis revealed overlap between the
congruency and the semantic model RDMs in the time-
window from approximately 290–395 ms. Within this
time-window, the congruency model successfully distin-
guished if an object was presented in congruent or
incongruent context, and the semantic model displayed

significantly better model fit with objects that were pre-
sented in an incongruent context compared to objects
that were presented in a congruent context. In order
to test if these two effects were related, we correlated
the time courses of the congruency model fit with the
time-course of the difference between the semantic
model fit for the congruent and incongruent conditions.
The results confirm a significant correlation (r = 0.44, p <
0.001; Figure 4(C)), demonstrating that the two analyses
could be capturing the same temporal effect of con-
gruency, which might suggest that effects of con-
gruency are explained by differences in the processing
of semantic object features.

Discussion

In the current study, we directly tested if scene context
influenced object recognition through the modulation
of processing semantic object information. We related
the similarity based on EEG activity in response to
visual objects with both a model of congruency and a
semantic model that was based on semantic object
property norms. Both the congruency model and
semantic model captured an effect of scene context on
object processing in the time-window for which N300/
N400 effects were previously reported (e.g. Draschkow
et al., 2018; Ganis & Kutas, 2003; Lauer et al., 2018;
2020; Mudrik et al., 2010; 2014; Võ & Wolfe, 2013).
Additionally, the semantic model revealed a difference
in processing of congruent and incongruent objects in
a later time-window beyond ∼ 600 ms, which has been
reported in some previous studies (e.g. Ganis & Kutas,
2003; Mudrik et al., 2010; Sauvé et al., 2017. Võ &
Wolfe, 2013). In these two time-windows, the semantic
model displayed stronger fit for incongruent than for
congruent objects, suggesting that the previously
observed congruency effects were driven by the
additional need for semantic processing of objects that
were incongruent with their environment. This contrasts
with alternative possibilities that semantic object infor-
mation could have been accessed faster for objects in
congruent compared to incongruent environments, or
that semantic access was initiated at the same time
and for the same duration for both congruent and incon-
gruent conditions.

Our research is the first to employ a modelling-based
approach to directly test the hypothesis that scene
context influences object recognition by modulating
the processing of semantic object information. The
stronger model fit for incongruent objects beyond
about 275 ms suggests that while both congruent and
incongruent objects involve semantic processing
beyond ∼150 ms, semantic processes are extended in

Table 1. EEG RSA effects.

Model RDM
time-

window
cluster-
mass

cluster p-
value

Congruency model 286–450 ms 74.26 p = .022
Semantic model:
consistent

141–235 ms 46.11 p = .064

Semantic model:
inconsistent

141–360 ms 132.25 p = .005

Semantic model:
inconsistent

616–765 ms 80.78 p = .021

Semantic model:
incon > con

276–395 ms 50.25 p = .049

Semantic model:
incon > con

596–870 ms 169.26 p = .002
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the incongruent condition. It may well be that this
extended semantic processing for incongruent objects
is what underpins the congruency effect, which seems
to begin at a similar time to the divergence of semantic
model fits across the two conditions.

Overall, our findings are in agreement with a frame-
work whereby context generates expectations about
objects we might encounter, and thereby affects the
way objects are processed (Bar, 2004; Clarke, 2019; Feder-
meier et al., 2016; Lauer & Võ, 2022; Oliva & Torralba,
2007). Our results, togetherwith previous findings of con-
gruency effects on N300/N400 EEG components, show
stronger effects for objects that were unexpected com-
pared to objects that were expected. This phenomenon
is consistent with the predictive coding account
(Friston, 2005) which states that the brain constructs
prior expectations about upcoming sensory events
based on experience, and generates an error response if
the event does not match the expectation. In terms of
scene-object congruency, exposure to a scene context
could create a prediction about what objects are likely
to appear in that scene. This is even more so here, as a
fixation dot appeared prior to the object indicating the
location the item would appear, thus limiting the range
of likely object candidates. If the object is not congruent
with the scene, and hence does not fit the prediction, it
triggers a prediction error response causing delayed or
enhancement of brain activity that is related to object
processing, like is seen for N300/N400 EEG components
(e.g. Draschkow et al., 2018; Ganis & Kutas, 2003; Lauer
et al., 2018; 2020; Mudrik et al., 2010; 2014; Võ & Wolfe,
2013; for a review see Lauer & Võ, 2022). Similar effects
of context on object recognition have been reported
not only for scenes but also for other types of prior infor-
mation like the presence of other objects (Auckland et al.,
2007; Kovalenko et al., 2012; McPherson & Holcomb,
1999), and has been demonstrated in semantic priming
studies (Renoult et al., 2012). This indicates that the
semantic effectswe seehere reflect amoregeneralmech-
anism that is not restricted to scenes, whereby the
context activates semantic or schema-consistent infor-
mation within which the semantics of a new item are to
be integrated, thus allowing us to use semantic infor-
mation from the world around us to predict what to
expect – be this what objects are likely to appear
around the corner, or what words might be next in a sen-
tence (for reviews see Federmeier et al., 2016; Kutas &
Federmeier, 2011; Võ, 2021; Võ et al., 2019). Taken
together, having a prior expectation about likely
objects might allow for more efficient semantic proces-
sing, with the consequence that we see rapid and short
semantic effects for congruent objects, and extended
semantic effects for incongruent objects.

In their original work, Draschkow and colleagues
(2018) demonstrated how congruency effects influen-
cing the N300 and N400 components constitute
highly related processes which allow the decoding
of congruency across the two time-windows, finding
significant cross-decoding of congruency from
about 200 ms after object onset. The consistency
model analysis that we employed, likewise tested to
distinguish between objects that were presented
either in congruent or incongruent context. Our
results highlight a similar time-window like the
decoding analysis, thus confirming that a model-
based approach is suitable to capture congruency
effects in EEG data.

In addition to the congruency effects in the N300/
N400 time-window, the semantic model analysis
revealed a difference in processing of congruent and
incongruent objects in a later time-window beyond
∼600 ms. Effects in this time window were previously
reported in similar studies, in which objects were
embedded into scenes (e.g. Ganis & Kutas, 2003;
Mudrik et al., 2010; Sauvé et al., 2017; Võ & Wolfe,
2013). However, the exact nature of these later effects
remains unclear as they vary depending on task-
demands (Ganis & Kutas, 2003; Sauvé et al., 2017; Võ &
Wolfe, 2013). Ganis and Kutas (2003), for example,
reported two different effects in this time window – a
stronger positivity for incongruent objects when the
task was to identify the object, and a topographically dis-
tinct effect that was stronger for congruent objects
when participants were additionally instructed to
provide confidence ratings. In our study, participants
were required to report if a scene-object combination
had been shown previously, and we find a stronger rep-
resentation of semantic information when the object
was incongruent, consistent with the first effect found
by Ganis and Kutas (2003). As such, it is unlikely that
our late effect reflects the confidence of a decision-
making process. Võ and Wolfe (2013) reported a P600
component specifically in the context of mild syntactic
violations of an object’s position in scenes (object mis-
placed), but not for extreme syntactic violations (object
in impossible position, for example in the air). One poss-
ible explanation for finding these effects in the current
data is that objects were embedded in scenes, and this
has likely induced a combination of semantic and mild
syntactic violations in incongruent scene-object trials.
For example, if a ball is embedded in a photo of a
kitchen and is placed inside a microwave, then in
addition to the semantic incongruency, a mild syntactic
violation is also created. This combination of semantic
and syntactic violations might explain RSA effects of
semantic object processing in incongruent scenes
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during a similar time window to the previously reported
P600 congruency effects.

In conclusion, our results revealed that while seman-
tic processing begins around 150 ms after the object
appears, the modulatory effect of the prior scene
context starts around the onset of the N300 com-
ponents, resulting in longer processing of objects that
are incongruent with a scene compared to objects that
are congruent. Additionally, we replicated effects in pre-
viously reported time-windows of the N300/N400 and
P600 EEG components using a computational modelling
approach. Importantly, our study highlights how object
recognition processes are flexibly adapted based on
prior information, in this case showing the dynamics
associated with accessing semantic knowledge are
modulated by the prior context.
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