6,213 research outputs found

    Dynamical density functional theory for the evaporation of droplets of nanoparticle suspension

    Get PDF
    We develop a lattice gas model for the drying of droplets of a nanoparticle suspension on a planar surface, using dynamical density functional theory (DDFT) to describe the time evolution of the solvent and nanoparticle density profiles. The DDFT assumes a diffusive dynamics but does not include the advective hydrodynamics of the solvent, so the model is relevant to highly viscous or near to equilibrium systems. Nonetheless, we see an equivalent of the coffee-ring stain effect, but in the present model it occurs for thermodynamic rather the fluid-mechanical reasons. The model incorporates the effect of phase separation and vertical density variations within the droplet and the consequence of these on the nanoparticle deposition pattern on the surface. We show how to include the effect of slip or no-slip at the surface and how this is related to the receding contact angle. We also determine how the equilibrium contact angle depends on the microscopic interaction parameters.Comment: 35 pages, 10 figure

    The impact of COVID-19 on routine patient care from a laboratory perspective

    Get PDF
    Background. Globally, few studies have examined the effect of the COVID-19 pandemic on routine patient care and follow-up.Objectives. To evaluate the effect of the COVID-19 response on biochemical test requests received from outpatient departments (OPDs) and peripheral clinics serviced by the National Health Laboratory Service Chemical Pathology Laboratory at Tygerberg Hospital, Cape Town, South Africa (SA). Request volumes were used as a measure of the routine care of patients, as clinical information was not readily available.Methods. A retrospective audit was conducted. The numbers of requests received from OPDs and peripheral clinics for creatinine, glycated haemoglobin (HbA1c), lipid profiles, thyroid-stimulating hormone (TSH), free thyroxine, free tri-iodothyronine (fT3), serum and urine protein electrophoresis, serum free light chains and neonatal total serum bilirubin were obtained from 1 March to 30 June for 2017, 2018, 2019 and 2020.Results. The biggest impact was seen on lipids, creatinine, HbA1c, TSH and fT3. The percentage reduction between 1 March and 30 June 2019 and between 1 March and 30 June 2020 was 59% for lipids, 64% for creatinine and HbA1c, 80% for TSH and 81% for fT3. There was a noteworthy decrease in overall analyte testing from March to April 2020, coinciding with initiation of level 5 lockdown. Although an increase in testing was observed during June 2020, the number of requests was still lower than in June 2019.Conclusions. This study, focusing on the short-term consequences of the SA response to the COVID-19 pandemic, found that routine follow-up of patients with communicable and non-communicable diseases was affected. Future studies are necessary to evaluate the long-term consequences of the pandemic for these patient groups.

    Synthesis and NMR Elucidation of Novel Pentacycloundecane-Derived Peptides

    Get PDF
    Herein we report the synthesis and NMR elucidation of five novel pentacycloundecane (PCU)-derived short peptides as potential HIV protease inhibitors. 1H and 13C spectral analysis show major overlapping of methine resonance of the PCU ‘cage’ thereby making it extremely difficult to assign the NMR signals. Attachment of short peptides to the cage at position C-8/C-11 results in conformational differences of the peptide side chains due to diastereomeric interactions between the cage skeleton and the chiral side chains. The use of two-dimensional NMR techniques proved to be highly effective in the elucidation of such systems.Keywords: 1H NMR, 13C NMR, 2D NMR, PCU diol diaminoacid, HIV protease inhibitors PDF and supplementary file attached

    Multi-level Meta-workflows: New Concept for Regularly Occurring Tasks in Quantum Chemistry

    Get PDF
    Background: In Quantum Chemistry, many tasks are reoccurring frequently, e.g. geometry optimizations, benchmarking series etc. Here, workflows can help to reduce the time of manual job definition and output extraction. These workflows are executed on computing infrastructures and may require large computing and data resources. Scientific workflows hide these infrastructures and the resources needed to run them. It requires significant efforts and specific expertise to design, implement and test these workflows. Significance: Many of these workflows are complex and monolithic entities that can be used for particular scientific experiments. Hence, their modification is not straightforward and it makes almost impossible to share them. To address these issues we propose developing atomic workflows and embedding them in meta-workflows. Atomic workflows deliver a well-defined research domain specific function. Publishing workflows in repositories enables workflow sharing inside and/or among scientific communities. We formally specify atomic and meta-workflows in order to define data structures to be used in repositories for uploading and sharing them. Additionally, we present a formal description focused at orchestration of atomic workflows into meta-workflows. Conclusions: We investigated the operations that represent basic functionalities in Quantum Chemistry and developed that relevant atomic workflows and combined them into meta-workflows. Having these workflows we defined the structure of the Quantum Chemistry workflow library and uploaded these workflows in the SHIWA Workflow Repository

    A South African cerebral palsy registry is needed

    Get PDF

    The SASSCAL contribution to climate observation, climate data management and data rescue in Southern Africa

    Get PDF
    A major task of the newly established "Southern African Science Service Centre for Climate Change and Adaptive Land Management" (SASSCAL; www.sasscal.org) and its partners is to provide science-based environmental information and knowledge which includes the provision of consistent and reliable climate data for Southern Africa. Hence, SASSCAL, in close cooperation with the national weather authorities of Angola, Botswana, Germany and Zambia as well as partner institutions in Namibia and South Africa, supports the extension of the regional meteorological observation network and the improvement of the climate archives at national level. With the ongoing rehabilitation of existing weather stations and the new installation of fully automated weather stations (AWS), altogether 105 AWS currently provide a set of climate variables at 15, 30 and 60 min intervals respectively. These records are made available through the SASSCAL WeatherNet, an online platform providing near-real time data as well as various statistics and graphics, all in open access. This effort is complemented by the harmonization and improvement of climate data management concepts at the national weather authorities, capacity building activities and an extension of the data bases with historical climate data which are still available from different sources. These activities are performed through cooperation between regional and German institutions and will provide important information for climate service related activities

    Supersymmetric CP Violation in B→Xsl+l−B \to X_s l^+ l^- in Minimal Supergravity Model

    Full text link
    Direct CP asymmetries and the CP violating normal polarization of lepton in inclusive decay B \to X_s l^+ l^- are investigated in minimal supergravity model with CP violating phases. The contributions coming from exchanging neutral Higgs bosons are included. It is shown that the direct CP violation in branching ratio, A_{CP}^1, is of {\cal{O}}(10^{-3}) for l=e, \mu, \tau. The CP violating normal polarization for l=\mu can reach 0.5 percent when tan\beta is large (say, 36). For l=\tau and in the case of large \tan\beta, the direct CP violation in backward-forward asymmetry, A_{CP}^2, can reach one percent, the normal polarization of \tau can be as large as a few percent, and both are sensitive to the two CP violating phases, \phi_\mu and \phi_{A_0}, and consequently it could be possible to observe them (in particular, the normal polarization of \tau) in the future B factories.Comment: 14 pages, latex, 5 figure

    The mediating effect of task presentation on collaboration and children's acquisition of scientific reasoning

    Get PDF
    There has been considerable research concerning peer interaction and the acquisition of children's scientific reasoning. This study investigated differences in collaborative activity between pairs of children working around a computer with pairs of children working with physical apparatus and related any differences to the development of children's scientific reasoning. Children aged between 9 and 10 years old (48 boys and 48 girls) were placed into either same ability or mixed ability pairs according to their individual, pre-test performance on a scientific reasoning task. These pairs then worked on either a computer version or a physical version of Inhelder and Piaget's (1958) chemical combination task. Type of presentation was found to mediate the nature and type of collaborative activity. The mixed-ability pairs working around the computer talked proportionally more about the task and management of the task; had proportionally more transactive discussions and used the record more productively than children working with the physical apparatus. Type of presentation was also found to mediated children's learning. Children in same ability pairs who worked with the physical apparatus improved significantly more than same ability pairs who worked around the computer. These findings were partially predicted from a socio-cultural theory and show the importance of tools for mediating collaborative activity and collaborative learning
    • 

    corecore