
Evaluation of the effect of plant growth retardants on vegetative growth, yield components, seed quality and crop maturity of kabuli chickpea

Prabhath Lokuruge, Manjula Bandara, Art Kruger, Ron Howard, Dustin Burke, Ted Harms, Nabi Chaudhary and Bunyamin Taran.

Mar 13 2012

Chickpea in Canada

Canadian chickpea production 2010

•Total production 128,300 tonnes

•Harvested area 76,900 Ha

http://faostat.fao.org

Major constraints for chickpea production in Western Canada

Disease (*Ascochyta* blight)

□ Problems associated with maturity

- Indeterminate growth habit (secondary vegetative growth)
- Short growing season
- Climatic conditions

Hypotheses

Plant growth retardants can;

□cease the secondary vegetative growth of

chickpea.

□ increase the percentage of marketable seeds

Objectives

Evaluate the effects of plant growth retardants on;

□ Vegetative growth

□ Yield components

□ Seed quality

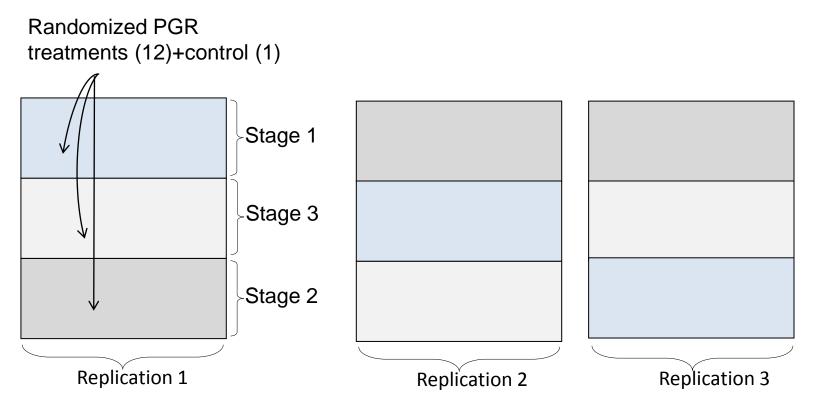
□Crop maturity

Materials and Methods

Plant growth retardants selected for the study

PGR	Trade name	Group	Manufacturer
Chlormequat chloride	Cycocel®	Onium compounds (block formation of CDP)	BASF
Prohexadione calcium	Apogee®	Acylcyclohexadiones	BASF
Trinexapac ethyl	Palisade®	(block GA ₁ formation)	Syngenta

Treatments

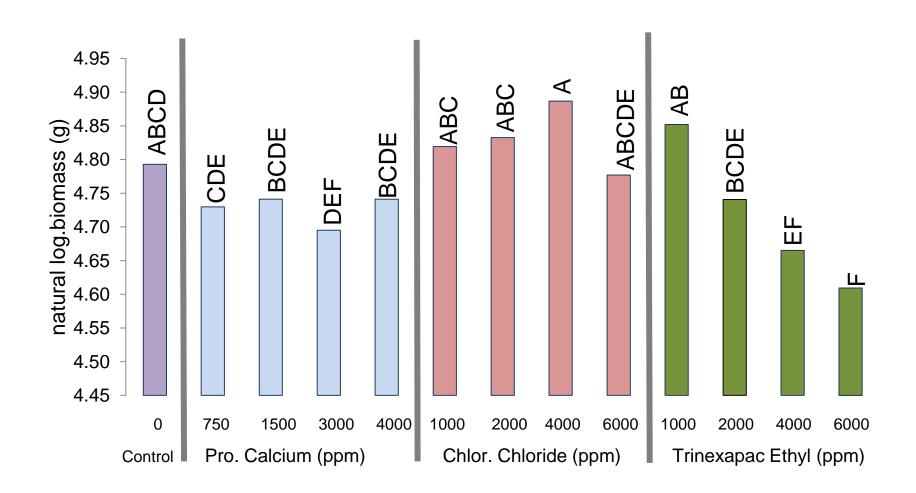

(i) Plant growth retardants

PGR	Rate1	Rate2	Rate3	Rate4	
Prohexadione Ca (Apogee [®])	750ppm	1500ppm	3000ppm	4500ppm	
CCC (Cycocel®)	1000ppm	2000ppm	4000ppm	6000ppm	
Trinexapac Ethyl	2083ppm	4167ppm	8333ppm	12498ppm	
(Palisade [®])					
(ii) Time of application					

Time of application	
Stage 1	10 days after 50% plants/plot bearing flowers
Stage 2	10 days after 1 st PGR treatment
Stage 3	10 days after 2 nd PGR treatment

Experimental design

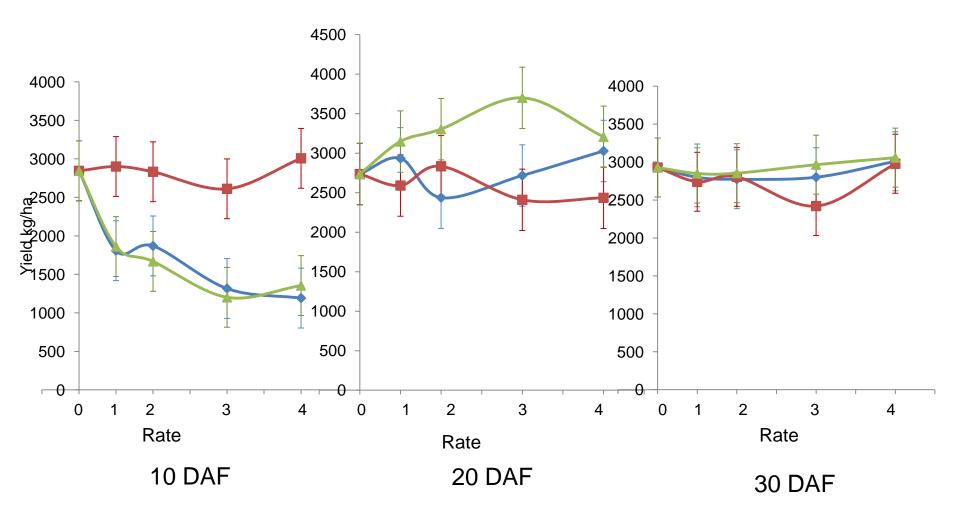
Split plots in factorial randomized complete block design was used for the field trials.


The variety used – CDC Frontier

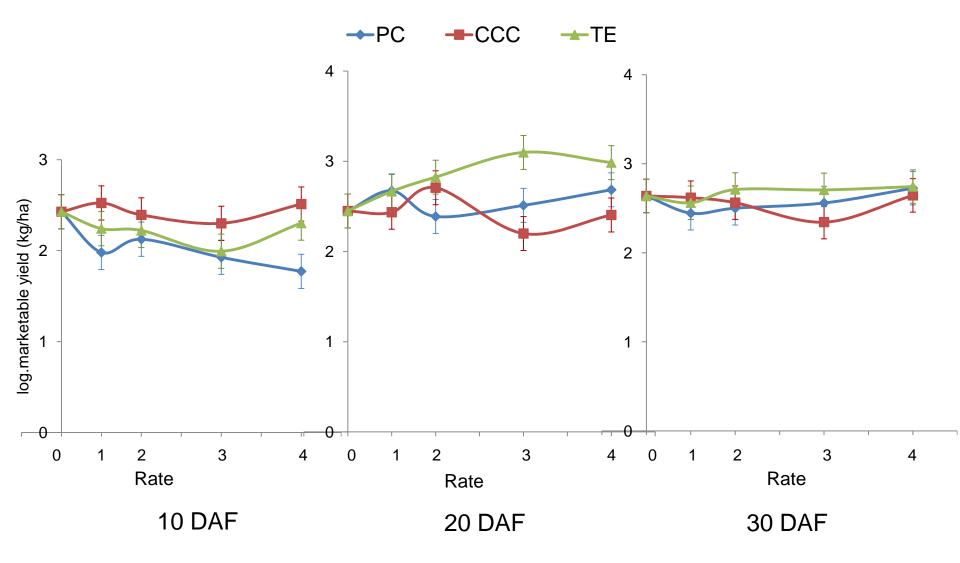
Results

Statistical analysis - 2010

	Plant height	Biomass	1000 seed weight	Seed yield	Marketable seed yield	Harvest index
location	*	ns	ns	*	*	*
fungicide	ns	ns	ns	ns	ns	ns
stage	**	ns	ns	**	**	*
pgr	**	**	ns	**	**	ns
location x fungicide	ns	ns	ns	ns	ns	ns
location x stage	**	ns	ns	ns	ns	**
fungicide x stage	ns	ns	ns	ns	ns	ns
location x pgr	**	ns	ns	*	*	ns
fungicide x pgr	*	ns	ns	ns	ns	ns
stage x pgr	**	ns	ns	**	**	**
location x fungicide x stage	ns	ns	ns	ns	ns	ns
location x fungicide x pgr	ns	ns	ns	ns	ns	ns
location x stage x pgr	*	ns	ns	ns	ns	ns
fungicide x stage x pgr	*	ns	ns	ns	ns	ns
Loc. x fungicide x stage x pgr	ns	ns	ns	ns	ns	ns


Biomass

CONTROL


TRINEXAPAC ETHYL

Seed yield

→PC →CCC →TE

Marketable seed yield

Summary

- Trinexapac ethyl is the most effective PGR to control vegetative growth of chickpea.
- Acylcyclohexadione type PGRs effectively control vegetative growth of chickpea.
- Impact of PGR on chickpea yield and marketable yield depend on the time of application.
- There is a potential to use trinexapac ethyl to boost chickpea yield. This has to be further investigated.

Acknowledgement

Academic committee

- •Dr. Bunyamin Taran (Supervisor)
- •Dr. Manjula Bandara (Supervisor)
- •Dr. Rosalind Bueckert
- •Dr. Sabine Banniza
- •Art Kruger & field crew of CDCS, Brooks AB
- Irrigation & pathology staff of CDCS, Brooks AB
- •Brent & crew of pulse lab, CDC, Saskatoon

THANK YOU!

