10 research outputs found

    The quest for brain disorder biomarkers

    Get PDF
    The identification of disease markers in tissues and body fluids requires an extensive and thorough analysis of its protein constituents. In our efforts to identify biomarkers for affective and neurological disorders we are pursuing several different strategies. On one hand we are using animal models that represent defined phenotypes charactersistic for the respective disorder in humans. In addition, we are analyzing human specimens from carefully phenotyped patient groups. Several fractions representing different protein classes from human cerebrospinal fluid obtained by lumbar puncture are used for this purpose. Our biomarker identification efforts range from classical proteomics approaches such as two dimensional gel electrophoresis and mass spectrometry to phage display screens with cerebrospinal fluid antibodies

    The quest for brain disorder biomarkers

    Get PDF
    The identification of disease markers in tissues and body fluids requires an extensive and thorough analysis of its protein constituents. In our efforts to identify biomarkers for affective and neurological disorders we are pursuing several different strategies. On one hand we are using animal models that represent defined phenotypes charactersistic for the respective disorder in humans. In addition, we are analyzing human specimens from carefully phenotyped patient groups. Several fractions representing different protein classes from human cerebrospinal fluid obtained by lumbar puncture are used for this purpose. Our biomarker identification efforts range from classical proteomics approaches such as two dimensional gel electrophoresis and mass spectrometry to phage display screens with cerebrospinal fluid antibodies

    Severe Asthma Standard-of-Care Background Medication Reduction With Benralizumab: ANDHI in Practice Substudy

    Get PDF
    Background: The phase IIIb, randomized, parallel-group, placebo-controlled ANDHI double-blind (DB) study extended understanding of the efficacy of benralizumab for patients with severe eosinophilic asthma. Patients from ANDHI DB could join the 56-week ANDHI in Practice (IP) single-arm, open-label extension substudy. Objective: Assess potential for standard-of-care background medication reductions while maintaining asthma control with benralizumab. Methods: Following ANDHI DB completion, eligible adults were enrolled in ANDHI IP. After an 8-week run-in with benralizumab, there were 5 visits to potentially reduce background asthma medications for patients achieving and maintaining protocol-defined asthma control with benralizumab. Main outcome measures for non-oral corticosteroid (OCS)-dependent patients were the proportions with at least 1 background medication reduction (ie, lower inhaled corticosteroid dose, background medication discontinuation) and the number of adapted Global Initiative for Asthma (GINA) step reductions at end of treatment (EOT). Main outcomes for OCS-dependent patients were reductions in daily OCS dosage and proportion achieving OCS dosage of 5 mg or lower at EOT. Results: For non-OCS-dependent patients, 53.3% (n = 208 of 390) achieved at least 1 background medication reduction, increasing to 72.6% (n = 130 of 179) for patients who maintained protocol-defined asthma control at EOT. A total of 41.9% (n = 163 of 389) achieved at least 1 adapted GINA step reduction, increasing to 61.8% (n = 110 of 178) for patients with protocol-defined EOT asthma control. At ANDHI IP baseline, OCS dosages were 5 mg or lower for 40.4% (n = 40 of 99) of OCS-dependent patients. Of OCS-dependent patients, 50.5% (n = 50 of 99) eliminated OCS and 74.7% (n = 74 of 99) achieved dosages of 5 mg or lower at EOT. Conclusions: These findings demonstrate benralizumab's ability to improve asthma control, thereby allowing background medication reduction

    Targeting B cells in the treatment of multiple sclerosis: recent advances and remaining challenges

    No full text
    Recent years have substantially broadened our view on the pathogenesis of multiple sclerosis (MS). While earlier concepts focused predominantly on T lymphocytes as the key cell type to mediate inflammatory damage within central nervous system (CNS) lesions, emerging evidence suggests that B lymphocytes may play a comparably important role both as precursors of antibody-secreting plasma cells and as antigen-presenting cells (APCs) for the activation of T cells. With greater appreciation of this pathogenic B-cell function in MS, B-cell-directed therapies, and in particular B-cell-depleting monoclonal antibodies targeting the CD20 molecule, have gained enormous interest over recent years. Clinical trials demonstrated that anti-CD20 treatment, which depletes immature and mature B cells but spares CD20 negative plasma cells, rapidly reduces formation of new inflammatory CNS lesions. While these findings clearly corroborate a pathogenic contribution of B cells, recent experimental but also clinical findings indicate that not all B cells contribute in an equally pathogenic manner and that certain subsets may in contrast mediate anti-inflammatory effects. In this review, we summarize current findings in support of pathogenic B-cell function in MS, including the encouraging clinical data which derived from anti-CD20 MS trials. Further, we review novel findings suggestive of regulatory properties of B-cell subsets which may be collaterally abolished by pan-CD20 depletion. In conclusion, we aim to provide an outlook on how this currently differentiating concept of pro- and anti-inflammatory B-cell function could be harnessed to further improve safety and effectiveness of B-cell-directed therapeutic approaches in MS

    White-matter lesions drive deep gray-matter atrophy in early multiple sclerosis: support from structural MRI

    Get PDF
    Background: In MS, the relationship between lesions within cerebral white matter (WM) and atrophy within deep gray matter (GM) is unclear. Objective: To investigate the spatial relationship between WM lesions and deep GM atrophy. Methods: We performed a cross-sectional structural magnetic resonance imaging (MRI) study (3 Tesla) in 249 patients with clinically-isolated syndrome or relapsing-remitting MS (Expanded Disability Status Scale score: median, 1.0; range, 0-4) and in 49 healthy controls. Preprocessing of T1-weighted and fluid-attenuated T2-weighted images resulted in normalized GM images and WM lesion probability maps. We performed two voxel-wise analyses: 1. We localized GM atrophy and confirmed that it is most pronounced within deep GM; 2. We searched for a spatial relationship between WM lesions and deep GM atrophy; to this end we analyzed WM lesion probability maps by voxel-wise multiple regression, including four variables derived from maxima of regional deep GM atrophy (caudate and pulvinar, each left and right). Results: Atrophy of each deep GM region was explained by ipsilateral WM lesion probability, in the area most densely connected to the respective deep GM region. Conclusion: We demonstrated that WM lesions and deep GM atrophy are spatially related. Our results are best compatible with the hypothesis that WM lesions contribute to deep GM atrophy through axonal pathology

    White-matter lesions drive deep gray-matter atrophy in early multiple sclerosis: support from structural MRI

    Get PDF
    Background: In MS, the relationship between lesions within cerebral white matter (WM) and atrophy within deep gray matter (GM) is unclear. Objective: To investigate the spatial relationship between WM lesions and deep GM atrophy. Methods: We performed a cross-sectional structural magnetic resonance imaging (MRI) study (3 Tesla) in 249 patients with clinically-isolated syndrome or relapsing-remitting MS (Expanded Disability Status Scale score: median, 1.0; range, 0-4) and in 49 healthy controls. Preprocessing of T1-weighted and fluid-attenuated T2-weighted images resulted in normalized GM images and WM lesion probability maps. We performed two voxel-wise analyses: 1. We localized GM atrophy and confirmed that it is most pronounced within deep GM; 2. We searched for a spatial relationship between WM lesions and deep GM atrophy; to this end we analyzed WM lesion probability maps by voxel-wise multiple regression, including four variables derived from maxima of regional deep GM atrophy (caudate and pulvinar, each left and right). Results: Atrophy of each deep GM region was explained by ipsilateral WM lesion probability, in the area most densely connected to the respective deep GM region. Conclusion: We demonstrated that WM lesions and deep GM atrophy are spatially related. Our results are best compatible with the hypothesis that WM lesions contribute to deep GM atrophy through axonal pathology

    Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity

    No full text
    Multiple sclerosis (MS) disease risk is associated with reduced sunexposure. This study assessed the relationship between measures of sun exposure (vitamin D [vitD], latitude) and MS severity in the setting of two multicenter cohort studies (n(NationMS) = 946, n(BIONAT) = 990). Additionally, effect-modification by medication and photosensitivity-associated MC1R variants was assessed. High serum vitD was associated with a reduced MS severity score (MSSS), reduced risk for relapses, and lower disability accumulation over time. Low latitude was associated with higher vitD, lower MSSS, fewer gadolinium-enhancing lesions, and lower disability accumulation. The association of latitude with disability was lacking in IFN-beta-treated patients. In carriers of MC1R:rs1805008(T), who reported increased sensitivity toward sunlight, lower latitude was associated with higher MRI activity, whereas for noncarriers there was less MRI activity at lower latitudes. In a further exploratory approach, the effect of ultraviolet (UV)-phototherapy on the transcriptome of immune cells of MS patients was assessed using samples from an earlier study. Phototherapy induced a vitD and type I IFN signature that was most apparent in monocytes but that could also be detected in B and T cells. In summary, our study suggests benefidal effects of sun exposure on established MS, as demonstrated by a correlative network between the three factors: Latitude, vitD, and disease severity. However, sun exposure might be detrimental for photosensitive patients. Furthermore, a direct induction of type I IFNs through sun exposure could be another mechanism of UV-mediated immune-modulation in MS
    corecore