167 research outputs found

    Silica cycling in the ultra-oligotrophic eastern Mediterranean Sea

    Get PDF
    Although silica is a key plant nutrient, there have been few studies aimed at understanding the Si cycle in the eastern Mediterranean Sea (EMS). Here we use a combination of new measurements and literature values to explain the silicic acid distribution across the basin and to calculate a silica budget to identify the key controlling processes. The surface water concentration of ∼1 μM, which is unchanging seasonally across the basin, was due to the inflow of western Mediterranean Sea (WMS) water at the Straits of Sicily. It does not change seasonally because there is only a sparse population of diatoms due to the low nutrient (N and P) supply to the photic zone in the EMS. The concentration of silicic acid in the deep water of the western Ionian Sea (6.3 μM) close to the S Adriatic are an of formation was due to the preformed silicic acid (3 μM) plus biogenic silica (BSi) from the dissolution of diatoms from the winter phytoplankton bloom (3.2 μM). The increase of 4.4 μM across the deep water of the EMS was due to silicic acid formed from in situ diagenetic weathering of aluminosilicate minerals fluxing out of the sediment. The major inputs to the EMS are silicic acid and BSi inflowing from the western Mediterranean (121 × 109 mol Si yr−1 silicic acid and 16 × 109 mol Si yr−1 BSi), silicic acid fluxing from the sediment (54 × 109 mol Si yr−1) and riverine (27 × 109 mol Si yr−1) and subterranean groundwater (9.7 × 109 mol Si yr−1) inputs, with only a minor direct input from dissolution of dust in the water column (1 × 109 mol Si yr−1). This budget shows the importance of rapidly dissolving BSi and in situ weathering of aluminosilicate minerals as sources of silica to balance the net export of silicic acid at the Straits of Sicily. Future measurements to improve the accuracy of this preliminary budget have been identified

    Development of a modified SEDEX phosphorus speciation method for ancient rocks and modern iron-rich sediments

    Get PDF
    We report the development of a modified method for evaluating different reservoirs of sedimentary phosphorus (P) in ancient marine sedimentary rocks and in modern Fe-rich sediments. Utilising the existing SEDEX scheme for P partitioning in modern sediments, we initially demonstrate limitations in the application of the original scheme to sediments and rocks containing crystalline hematite and magnetite. We tested additional extractions for these crystalline Fe phases, using both synthetic minerals, and modern and ancient sediments. The addition of 6 h oxalate and 6 h citrate-dithionate-acetate extractions considerably enhanced the total recovery of synthetic magnetite and hematite to 88.7 ± 1.1% and 76.9 ± 3.8%, respectively. In addition, application of the 6 h oxalate extraction to synthetic P-containing magnetite recovered 93.9 ± 1.7% of the Fe present and 88.2 ± 12.8% of the co-precipitated P. Based upon these results we developed a modified SEDEX extraction scheme. The modified scheme was applied to modern Fe-rich sediments from Golfo Dulce, Costa Rica, which resulted in 16% higher Fe-bound P recovery. Application of the scheme to a variety of ancient marine rocks increased the recovery of Fe-bound P by up to 22%. We also highlight the potential for authigenic carbonate fluorapatite to convert to more crystalline apatite in ancient rocks during deep burial and metamorphism. We suggest that in such systems minimum and maximum estimates of the total reactive P pool may be calculated with and without the inclusion of crystalline P. It is noted that the application of the revised method may have important implications for understanding the cycling of P in ancient marine environments

    Understanding the unique biogeochemistry of the Mediterranean Sea: Insights from a coupled phosphorus and nitrogen model

    Get PDF
    The Mediterranean Sea (MS) is an oligotrophic basin whose offshore water column exhibits low dissolved inorganic phosphorus (P) and nitrogen (N) concentrations, unusually high nitrate (NO3) to phosphate (PO4) ratios, and distinct biogeochemical differences between the Western Mediterranean Sea (WMS) and Eastern Mediterranean Sea (EMS). A new mass balance model of P and N cycling in the WMS is coupled to a pre‐existing EMS model to understand these biogeochemical features. Estimated land‐derived inputs of reactive P and N to the WMS and EMS are similar per unit surface area, but marine inputs are 4 to 5 times greater for the WMS, which helps explain the approximately 3 times higher primary productivity of the WMS. The lateral inputs of marine sourced inorganic and organic P support significant fractions of new production in the WMS and EMS, similar to subtropical gyres. The mass balance calculations imply that the MS is net heterotrophic: dissolved organic P and N entering the WMS and EMS, primarily via the Straits of Gibraltar and Sicily, are mineralized to PO4 and NO3 and subsequently exported out of the basin by the prevailing anti‐estuarine circulation. The high deepwater (DW) molar NO3:PO4 ratios reflect the high reactive N:P ratio of inputs to the WMS and EMS, combined with low denitrification rates. The lower DW NO3:PO4 ratio of the WMS (21) compared to the EMS (28) reflects lower reactive N:P ratios of inputs to the WMS, including the relatively low N:P ratio of Atlantic surface water flowing into the WMS

    Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans

    Get PDF
    Iceberg-hosted sediments and atmospheric dust transport potentially bioavailable iron to the Arctic and Southern oceans as ferrihydrite. Ferrihydrite is nanoparticulate and more soluble, as well as potentially more bioavailable, than other iron (oxyhydr)oxide minerals (lepidocrocite, goethite, and hematite). A suite of more than 50 iceberghosted sediments contain a mean content of 0.076 wt% Fe as ferrihydrite, which produces iceberg-hosted Fe fluxes ranging from 0.7 to 5.5 and 3.2 to 25 Gmoles yr 1 to the Arctic and Southern oceans respectively. Atmospheric dust (with little or no combustion products) contains a mean ferrihydrite Fe content of 0.038 wt% (corresponding to a fractional solubility of 1 %) and delivers much smaller Fe fluxes (0.02–0.07 Gmoles yr 1 to the Arctic Ocean and 0.0– 0.02 Gmoles yr 1 to the Southern Ocean). New dust flux data show that most atmospheric dust is delivered to sea ice where exposure to melting/re-freezing cycles may enhance fractional solubility, and thus fluxes, by a factor of approximately 2.5. Improved estimates for these particulate sources require additional data for the iceberg losses during fjord transit, the sediment content of icebergs, and samples of atmospheric dust delivered to the polar regions

    Iron from coal combustion particles dissolves much faster than mineral dust under simulated atmospheric acidic conditions

    Get PDF
    Mineral dust is the largest source of aerosol iron (Fe) to the offshore global ocean, but acidic processing of coal fly ash (CFA) in the atmosphere could be an important source of soluble aerosol Fe. Here, we determined the Fe speciation and dissolution kinetics of CFA from Aberthaw (United Kingdom), Krakow (Poland), and Shandong (China) in solutions which simulate atmospheric acidic processing. In CFA PM10 fractions, 8 %–21.5 % of the total Fe was found to be hematite and goethite (dithionite-extracted Fe), and 2 %–6.5 % was found to be amorphous Fe (ascorbate-extracted Fe), while magnetite (oxalate-extracted Fe) varied from 3 %–22 %. The remaining 50 %–87 % of Fe was associated with other Fe-bearing phases, possibly aluminosilicates. High concentrations of ammonium sulfate ((NH4)2SO4), often found in wet aerosols, increased Fe solubility of CFA up to 7 times at low pH (2–3). The oxalate effect on the Fe dissolution rates at pH 2 varied considerably, depending on the samples, from no impact for Shandong ash to doubled dissolution for Krakow ash. However, this enhancement was suppressed in the presence of high concentrations of (NH4)2SO4. Dissolution of highly reactive (amorphous) Fe was insufficient to explain the high Fe solubility at low pH in CFA, and the modelled dissolution kinetics suggest that other Fe-bearing phases such as magnetite may also dissolve relatively rapidly under acidic conditions. Overall, Fe in CFA dissolved up to 7 times faster than in a Saharan dust precursor sample at pH 2. Based on these laboratory data, we developed a new scheme for the proton- and oxalate-promoted Fe dissolution of CFA, which was implemented into the global atmospheric chemical transport model IMPACT (Integrated Massively Parallel Atmospheric Chemical Transport). The revised model showed a better agreement with observations of Fe solubility in aerosol particles over the Bay of Bengal, due to the initial rapid release of Fe and the suppression of the oxalate-promoted dissolution at low pH. The improved model enabled us to predict sensitivity to a more dynamic range of pH changes, particularly between anthropogenic combustion and biomass burning aerosols

    Taxonomic and Environmental Variability in the Elemental Composition and Stoichiometry of Individual Dinoflagellate and Diatom Cells from the NW Mediterranean Sea

    Get PDF
    Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA), a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp.) collected from different sites of the Catalan coast (NW Mediterranean Sea). As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20–23). The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical cycles

    Interactive Effect of UVR and Phosphorus on the Coastal Phytoplankton Community of the Western Mediterranean Sea: Unravelling Eco- Physiological Mechanisms

    Get PDF
    VersiĂłn del editor4,411

    Late Byzantine Mineral Soda High Alumina Glasses from Asia Minor: A New Primary Glass Production Group

    Get PDF
    The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey) that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA) and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor

    Jellyfish Modulate Bacterial Dynamic and Community Structure

    Get PDF
    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in bacterial population dynamics and nutrient pathways following jellyfish blooms which have important implications for ecology of coastal waters
    • …
    corecore