68 research outputs found

    From disease genes to behavioural screen in zebrafish: early onset Alzheimer’s as case study

    Get PDF
    To design prevention strategies and disease-modifying therapies in Alzheimer’s disease, we must discover biological processes which contribute to disease. Genomic studies can point to such causal processes, but their findings are rarely exploited in a systematic, hypothesis-free manner. In this thesis, we present a strategy in zebrafish to link disease-associated genes to likely causal processes. The first step is to inactivate each gene in zebrafish larvae. For this purpose, we developed a rapid CRISPR-Cas9 method capable of converting wild-type eggs directly into knockout larvae for any gene of interest. The method effectively cuts the experimental time from gene to knockout zebrafish from months to one day. The second step is to monitor the behaviour of the mutated larvae. As a case study, we targeted the three genes associated with early-onset Alzheimer’s disease. We found, for example, that larvae with loss-of-function mutations in presenilin 2 are less active during the day. The third step will be to use predictive pharmacology to identify drugs which cause the same phenotype in wild- type animals, thereby pointing to the defective process. This strategy is both scalable thanks to the knockout method and generalisable beyond Alzheimer’s disease. It can now be employed to screen tens or hundreds of genes associated with other conditions, such as schizophrenia or epilepsy

    Prion protein gene mutation detection using long-read Nanopore sequencing

    Get PDF
    Prion diseases are fatal neurodegenerative conditions that affect humans and animals. Rapid and accurate sequencing of the prion gene PRNP is paramount to human prion disease diagnosis and for animal surveillance programmes. Current methods for PRNP genotyping involve sequencing of small fragments within the protein-coding region. The contribution of variants in the non-coding regions of PRNP including large structural changes is poorly understood. Here, we used long-range PCR and Nanopore sequencing to sequence the full length of PRNP, including its regulatory region, in 25 samples from blood and brain of individuals with inherited or sporadic prion diseases. Nanopore sequencing detected the same variants as identified by Sanger sequencing, including repeat expansions/deletions. Nanopore identified additional single-nucleotide variants in the non-coding regions of PRNP, but no novel structural variants were discovered. Finally, we explored somatic mosaicism of PRNP's octapeptide repeat region, which is a hypothetical cause of sporadic prion disease. While we found changes consistent with somatic mutations, we demonstrate that they may have been generated by the PCR. Our study illustrates the accuracy of Nanopore sequencing for rapid and field prion disease diagnosis and highlights the need for single-molecule sequencing methods for the detection of somatic mutations

    Scaling of Selfavoiding Tethered Membranes: 2-Loop Renormalization Group Results

    Full text link
    The scaling properties of selfavoiding polymerized membranes are studied using renormalization group methods. The scaling exponent \nu is calculated for the first time at two loop order. \nu is found to agree with the Gaussian variational estimate for large space dimension d and to be close to the Flory estimate for d=3.Comment: 4 pages, RevTeX + 20 .eps file

    New Renormalization Group Results for Scaling of Self-Avoiding Tethered Membranes

    Full text link
    The scaling properties of self-avoiding polymerized 2-dimensional membranes are studied via renormalization group methods based on a multilocal operator product expansion. The renormalization group functions are calculated to second order. This yields the scaling exponent nu to order epsilon^2. Our extrapolations for nu agree with the Gaussian variational estimate for large space dimension d and are close to the Flory estimate for d=3. The interplay between self-avoidance and rigidity at small d is briefly discussed.Comment: 97 pages, 120 .eps-file

    SnCN₂: A Carbodiimide with an Innovative Approach for Energy Storage Systems and Phosphors in Modern LED Technology

    Get PDF
    The carbodiimide SnCN2_{2} was prepared at low temperatures (400 °C–550 °C) by using a patented urea precursor route. The crystal structure of SnCN2_{2} was determined from single‐crystal data in space group C2/c (no. 15) with a=9.1547(5), b=5.0209(3), c=6.0903(3) Å, ÎČ=117.672(3), V=247.92 Å3^{3} and Z=4. As carbodiimide compounds display remarkably high thermal and chemical resistivity, SnCN2_{2} has been doped with Eu and Tb to test it for its application in future phosphor‐converted LEDs. This doping of SnCN2_{2} proved that a color tuning of the carbodiimide host with different activator ions and the combination of the latter ones is possible. Additionally, as the search for novel high‐performing electrode materials is essential for current battery technologies, this carbodiimide has been investigated concerning its use in lithium‐ion batteries. To further elucidate its application possibilities in materials science, several characterization steps and physical measurements (XRD, in situ XANES, Sn Mössbauer spectroscopy, thermal expansion, IR spectroscopy, Mott‐Schottky analysis) were carried out. The electronic structure of the n‐type semiconductor SnCN2_{2} has been probed using X‐ray absorption spectroscopy and density functional theory (DFT) computations

    linc-mipep and linc-wrb encode micropeptides that regulate chromatin accessibility in vertebrate-specific neural cells

    Get PDF
    Thousands of long intergenic non-coding RNAs (lincRNAs) are transcribed throughout the vertebrate genome. A subset of lincRNAs enriched in developing brains have recently been found to contain cryptic open-reading frames and are speculated to encode micropeptides. However, systematic identification and functional assessment of these transcripts have been hindered by technical challenges caused by their small size. Here, we show that two putative lincRNAs (linc-mipep, also called lnc-rps25, and linc-wrb) encode micropeptides with homology to the vertebrate-specific chromatin architectural protein, Hmgn1, and demonstrate that they are required for development of vertebrate-specific brain cell types. Specifically, we show that NMDA receptor-mediated pathways are dysregulated in zebrafish lacking these micropeptides and that their loss preferentially alters the gene regulatory networks that establish cerebellar cells and oligodendrocytes - evolutionarily newer cell types that develop postnatally in humans. These findings reveal a key missing link in the evolution of vertebrate brain cell development and illustrate a genetic basis for how some neural cell types are more susceptible to chromatin disruptions, with implications for neurodevelopmental disorders and disease

    A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes.

    Get PDF
    Hundreds of human genes are associated with neurological diseases, but translation into tractable biological mechanisms is lagging. Larval zebrafish are an attractive model to investigate genetic contributions to neurological diseases. However, current CRISPR-Cas9 methods are difficult to apply to large genetic screens studying behavioural phenotypes. To facilitate rapid genetic screening, we developed a simple sequencing-free tool to validate gRNAs and a highly effective CRISPR-Cas9 method capable of converting >90% of injected embryos directly into F0 biallelic knockouts. We demonstrate that F0 knockouts reliably recapitulate complex mutant phenotypes, such as altered molecular rhythms of the circadian clock, escape responses to irritants, and multi-parameter day-night locomotor behaviours. The technique is sufficiently robust to knockout multiple genes in the same animal, for example to create the transparent triple knockout crystal fish for imaging. Our F0 knockout method cuts the experimental time from gene to behavioural phenotype in zebrafish from months to one week

    “Nanostandardization” in action: implementing standardization processes in a multidisciplinary nanoparticle-based research and development project

    Get PDF
    Nanomaterials have attracted much interest in the medical field and related applications as their distinct properties in the nano-range enable new and improved diagnosis and therapies. Owing to these properties and their potential interactions with the human body and the environment, the impact of nanomaterials on humans and their potential toxicity have been regarded a very significant issue. Consequently, nanomaterials are the subject of a wide range of cutting-edge research efforts in the medical and related fields to thoroughly probe their potential beneficial utilizations and their more negative effects. We posit that the lack of standardization in the field is a serious shortcoming as it has led to the establishment of methods and results that do not ensure sufficient consistency and thus in our view can possibly result in research outputs that are not as robust as they should be. The main aim of this article is to present how NanoDiaRA, a large FP7 European multidisciplinary project that seeks to investigate and develop nanotechnology-based diagnostic systems, has developed and implemented robust, standardized methods to support research practices involving the engineering and manipulation of nanomaterials. First, to contextualize this research, an overview of the measures defined by different regulatory bodies concerning nano-safety is presented. Although these authorities have been very active in the past several years, many questions remain unanswered in our view. Second, a number of national and international projects that attempted to ensure more reliable exchanges of methods and results are discussed. However, the frequent lack of publication of procedures and protocols in research can often be a hindrance for sharing those good practices. Subsequently, the efforts made through NanoDiaRA to introduce standardized methods and techniques to support the development and utilization of nanomaterials are discussed in depth. A series of semi-structured interviews were conducted with the partners of this project, and the interviews were analyzed thematically to highlight the determined efforts of the researchers to standardize their methods. Finally, some recommendations are made towards the setting up of well-defined methods to support the high-quality work of collaborative nanoparticle-based research and development projects and to enhance standardization processes

    Mixtures of Chemical Pollutants at European Legislation Safety Concentrations: How Safe Are They?

    Get PDF
    The risk posed by complex chemical mixtures in the environment to wildlife and humans is increasingly debated, but has been rarely tested under environmentally relevant scenarios. To address this issue, two mixtures of 14 or 19 substances of concern (pesticides, pharmaceuticals, heavy metals, polyaromatic hydrocarbons, a surfactant, and a plasticizer), each present at its safety limit concentration imposed by the European legislation, were prepared and tested for their toxic effects. The effects of the mixtures were assessed in 35 bioassays, based on 11 organisms representing different trophic levels. A consortium of 16 laboratories was involved in performing the bioassays. The mixtures elicited quantifiable toxic effects on some of the test systems employed, including i) changes in marine microbial composition, ii) microalgae toxicity, iii) immobilization in the crustacean Daphnia magna, iv) fish embryo toxicity, v) impaired frog embryo development, and vi) increased expression on oxidative stress-linked reporter genes. Estrogenic activity close to regulatory safety limit concentrations was uncovered by receptor-binding assays. The results highlight the need of precautionary actions on the assessment of chemical mixtures even in cases where individual toxicants are present at seemingly harmless concentration

    Mixtures of chemical pollutants at European legislation safety concentrations: how safe are they?

    Get PDF
    The risk posed by complex chemical mixtures in the environment to wildlife and humans is increasingly debated, but has been rarely tested under environmentally relevant scenarios. To address this issue, two mixtures of 14 or 19 substances of concern (pesticides, pharmaceuticals, heavy metals, polyaromatic hydrocarbons, a surfactant, and a plasticizer), each present at its safety limit concentration imposed by the European legislation, were prepared and tested for their toxic effects. The effects of the mixtures were assessed in 35 bioassays, based on 11 organisms representing different trophic levels. A consortium of 16 laboratories was involved in performing the bioassays. The mixtures elicited quantifiable toxic effects on some of the test systems employed, including i) changes in marine microbial composition, ii) microalgae toxicity, iii) immobilization in the crustacean Daphnia magna, iv) fish embryo toxicity, v) impaired frog embryo development, and vi) increased expression on oxidative stress-linked reporter genes. Estrogenic activity close to regulatory safety limit concentrations was uncovered by receptor-binding assays. The results highlight the need of precautionary actions on the assessment of chemical mixtures even in cases where individual toxicants are present at seemingly harmless concentrations
    • 

    corecore