86 research outputs found

    Splotch: porting and optimizing for the Xeon Phi

    Get PDF
    With the increasing size and complexity of data produced by large scale numerical simulations, it is of primary importance for scientists to be able to exploit all available hardware in heterogenous High Performance Computing environments for increased throughput and efficiency. We focus on the porting and optimization of Splotch, a scalable visualization algorithm, to utilize the Xeon Phi, Intel's coprocessor based upon the new Many Integrated Core architecture. We discuss steps taken to offload data to the coprocessor and algorithmic modifications to aid faster processing on the many-core architecture and make use of the uniquely wide vector capabilities of the device, with accompanying performance results using multiple Xeon Phi. Finally performance is compared against results achieved with the GPU implementation of Splotch

    VisIVO - Integrated Tools and Services for Large-Scale Astrophysical Visualization

    Full text link
    VisIVO is an integrated suite of tools and services specifically designed for the Virtual Observatory. This suite constitutes a software framework for effective visual discovery in currently available (and next-generation) very large-scale astrophysical datasets. VisIVO consists of VisiVO Desktop - a stand alone application for interactive visualization on standard PCs, VisIVO Server - a grid-enabled platform for high performance visualization and VisIVO Web - a custom designed web portal supporting services based on the VisIVO Server functionality. The main characteristic of VisIVO is support for high-performance, multidimensional visualization of very large-scale astrophysical datasets. Users can obtain meaningful visualizations rapidly while preserving full and intuitive control of the relevant visualization parameters. This paper focuses on newly developed integrated tools in VisIVO Server allowing intuitive visual discovery with 3D views being created from data tables. VisIVO Server can be installed easily on any web server with a database repository. We discuss briefly aspects of our implementation of VisiVO Server on a computational grid and also outline the functionality of the services offered by VisIVO Web. Finally we conclude with a summary of our work and pointers to future developments

    VisIVOWeb: A WWW Environment for Large-Scale Astrophysical Visualization

    Get PDF
    This article presents a newly developed Web portal called VisIVOWeb that aims to provide the astrophysical community with powerful visualization tools for large-scale data sets in the context of Web 2.0. VisIVOWeb can effectively handle modern numerical simulations and real-world observations. Our open-source software is based on established visualization toolkits offering high-quality rendering algorithms. The underlying data management is discussed with the supported visualization interfaces and movie-making functionality. We introduce VisIVOWeb Network, a robust network of customized Web portals for visual discovery, and VisIVOWeb Connect, a lightweight and efficient solution for seamlessly connecting to existing astrophysical archives. A significant effort has been devoted for ensuring interoperability with existing tools by adhering to IVOA standards. We conclude with a summary of our work and a discussion on future developments

    Integrating virtual reality and gis tools for geological mapping, data collection and analysis: An example from the metaxa mine, santorini (Greece)

    Get PDF
    In the present work we highlight the effectiveness of integrating different techniques and tools for better surveying, mapping and collecting data in volcanic areas. We use an Immersive Virtual Reality (IVR) approach for data collection, integrated with Geographic Information System (GIS) analysis in a well-known volcanological site in Santorini (Metaxa mine), a site where volcanic processes influenced the island’s industrial development, especially with regard to pumice mining. Specifically, we have focused on: (i) three-dimensional (3D) high-resolution IVR scenario building, based on Structure from Motion photogrammetry (SfM) modeling; (ii) subsequent geological survey, mapping and data collection using IVR; (iii) data analysis, e.g., calculation of extracted volumes, as well as production of new maps in a GIS environment using input data directly from the IVR survey; and finally, (iv) presentation of new outcomes that highlight the importance of the Metaxa Mine as a key geological and volcanological geosite

    Organic carbon export and loss rates in the Red Sea

    Get PDF
    The export and fate of organic carbon in the mesopelagic zone are still poorly understood and quantified due to lack of observations. We exploited data from a BGC‐Argo float that was deployed in the Red Sea to study how a warm and hypoxic environment can affect the fate of the organic carbon in the ocean’s interior. We observed that only 10% of the particulate organic carbon (POC) exported survived at depth due to remineralization processes in the upper mesopelagic zone. We also found that POC exported was rapidly degraded in a first stage and slowly in a second one, which may be dependent on the palatability of the organic matter. We observed that AOU‐based loss rates (a proxy of the remineralization of total organic matter) were significantly higher than the POC‐based loss rates, likely because changes in AOU are mainly attributed to changes in dissolved organic carbon. Finally, we showed that POC‐ and AOU‐based loss rates could be expressed as a function of temperature and oxygen concentration. These findings advance our understanding of the biological carbon pump and mesopelagic ecosystem

    VO-compliant workflows and science gateways

    Get PDF
    Abstract Workflow and science gateway technologies have been widely adopted by scientific communities as a valuable tool to carry out complex experiments. They offer the possibility to perform computations for data analysis and simulations, whereas hiding details of the complex infrastructures underneath. There are many workflow management systems covering a large variety of generic services coordinating execution of workflows. In this paper we describe our experiences in creating workflows oriented science gateway based on gUSE/WS-PGRADE technology and in particular we discuss the efforts devoted to develop a VOcompliant web environment

    VO-compliant workflows and science gateways

    Get PDF
    Workflow and science gateway technologies have been adopted by scientific communities as a valuable tool to carry out complex experiments. They offer the possibility to perform computations for data analysis and simulations, whereas hiding details of the complex infrastructures underneath. There are many workflow management systems covering a large variety of generic services coordinating execution of workflows. In this paper we describe our experiences in creating workflows oriented science gateways based on gUSE/WS-PGRADE technology and in particular we discuss the efforts devoted to develop a VO-compliant web environment

    Workflows and Science Gateways for Astronomical Experiments

    Get PDF
    Workflow and science gateway technologies have been adopted by scientific communities as a valuable tool to carry out complex experiments. They offer the possibility to perform computations for data analysis and simulations, whereas hiding details of the complex infrastructures underneath. In this paper we describe our experiences in creating workflows oriented science gateways based on gUSE/WS-PGRADE technology that allow to build user-friendly science gateways for Astronomers

    An integrated visualization environment for the virtual observatory: Current status and future directions

    Get PDF
    Visual exploration and discovery applications are invaluable tools to provide prompt and intuitive insights into the intrinsic data characteristics of modern astronomy and astrophysics datasets. Due to the massively large and highly complex datasets, various technical challenges are involved to reach, e.g. interactivity, integration, navigation and collaboration. This paper describes a number of approaches to address these challenges, and focuses on the current status of VisIVO (Visualization Interface for the Virtual Observatory) concentrating on the provided tools ranging from a desktop application to a science gateway and a mobile application. We emphasize the latest developments made in the context of past and current international European funded projects and highlight planned future developments towards further integration within the framework of the Virtual Observatory

    Efficient hydrogen storage in up-scale metal hydride tanks as possible metal hydride compression agents equipped with aluminium extended surfaces

    Get PDF
    In the current work, a three-dimensional computational study regarding coupled heat and mass transfer during both the hydrogenation and dehydrogenation process in upscale cylindrical metal hydride reactors is presented, analysed and optimized. Three different heat management scenarios were examined at the degree to which they provide improved system performance. The three scenarios were: 1) plain embedded cooling/heating tubes, 2) transverse finned tubes and 3) longitudinal finned tubes. A detailed optimization study was presented leading to the selection of the optimized geometries. In addition, two different types of hydrides, LaNi5 and an AB2-type intermetallic were studied as possible candidate materials for using as the first stage alloys in a two-stage metal hydride hydrogen compression system. As extracted from the above results, it is clear that the case of using a vessel equipped with 16 longitudinal finned tubes is the most efficient way to enhance the hydrogenation kinetics when using both LaNi5 and the AB2-alloy as the hydride agents. When using LaNi5 as the operating hydride the case of the vessel equipped with 60 embedded cooling tubes presents the same kinetic behaviour with the case of the vessel equipped with 12 longitudinal finned tubes, so in that way, by using extended surfaces to enhance the heat exchange can reduce the total number of tubes from 60 to 12. For the case of using the AB2-type material as the operating hydride the performance of the extended surfaces is more dominant and effective compared to the case of using the embedded tubes, especially for the case of the longitudinal extended surfaces
    • 

    corecore