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Abstract

Workflow and science gateway technologies have been widely adopted by scien-

tific communities as a valuable tool to carry out complex experiments. They

offer the possibility to perform computations for data analysis and simulations,

whereas hiding details of the complex infrastructures underneath. There are

many workflow management systems covering a large variety of generic services

coordinating execution of workflows. In this paper we describe our experiences

in creating workflows oriented science gateway based on gUSE/WS-PGRADE

technology and in particular we discuss the efforts devoted to develop a VO-

compliant web environment.
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1. Introduction

Astronomy and Astrophysics (A&A) has become a data intensive science,

due to numerous digital sky surveys across a range of wavelengths, with many

terabytes of data and often with tens of measured parameters associated to each

observed object. Moreover new highly complex and massively large data sets5

are expected by novel and more complex scientific instruments and numerical

simulations that will become available in the next decades and that will be
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largely used by the A&A community (e.g. SKA (Taylor, 2007), CTA (Acharya

et al., 2013), E-ELT (Gilmozzi and Spyromilio, 2007)).

Handling and exploring these new data volumes, and actually making real10

scientific discoveries, poses a considerable technical challenge that requires the

adoption of new approaches in using computing and storage resources and in

organising scientific collaborations. To this extent workflows have emerged as

a new paradigm for researchers to formalize and structure complex scientific

experiments in order to enable and accelerate scientific discoveries.15

Workflows system combined with Science Gateway (SGW) technologies are

widely used to provide a technological framework that integrates an enriched

web user interface with a solid engine to orchestrate scientific applications and

tools. SGW as defined here is a community-developed set of tools, applications,

and data that is integrated via a portal or a suite of applications that is further20

customized to meet the needs of a targeted community in a web-based graphical

user interface. The computational processes supported by SGWs are organized

as scientific workflows that explicitly specify dependencies among underlying

tasks for orchestrating distributed resources (such as clusters, grids or clouds)

appropriately.25

The e-Infrastructures or Distributed Computing Infrastructures (DCI) pro-

vide a vital foundation to execute workflow’s tasks and store data. In the last

decade, scientific communities have adopted production DCIs to satisfy their

computing and storage requirements (e.g. the European Grid Infrastructure

(EGI1) and the Open Science Grid2). Managing the execution of applications30

on DCIs is a complex task. Moreover, solutions developed for one DCI are diffi-

cult to port to other infrastructures. In order to hide this complexity, workflow

systems and SGWs are widely used as a virtualization layer on top of the un-

derlying infrastructures (Deelman et al., 2009; Belloum et al., 2011; Barker and

van Hemert, 2008; Curcin and Ghanem, 2008).35

1EGI: http://www.egi.eu
2Open Science Grid: www.opensciencegrid.org
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Research communities have developed different workflow systems and a large

numbers of workflows to run their experiments (Deelman et al., 2009). These

systems differ in terms of workflow description languages and workflow engines.

Workflows have been widely used also in A&A, for example: the ESO Reflex

(Freudling et al., 2013), the Astro Grid Workflow system (Winstanley, 2006), the40

HELIO-VO project (Bentley et al., 2011), the EU FP7 funded project Wf4Ever:

Advanced Workflow Preservation Technologies for Enhanced Science3.

In the framework of the ER-flow4 (Building an European Research Commu-

nity through Interoperable Workflows and Data) project, the A&A community

has developed a number of workflows and SGWs for cosmological simulations,45

data post-processing and scientific visualisation.

While SGW and Workflows systems allow to create an environment able to

benefit from DCIs, the A&A community needs not only traditional computing

resources but also the use of complex data operations that require on-line access

to catalogues and archives. The Virtual Observatory provides a distributed data50

oriented infrastructure based on standards, tools, software and services of the

International Virtual Observatory Alliance (IVOA5). To provide an operative

environment to A&A researchers SGWs and workflows systems should be able

to interact and provide access also to VO tools and services.

In this paper we present A&A science gateways developed using gUSE/WS-55

PGRADE technology (Kacsuk et al., 2012) and in particular we discuss our

experiences in developing VO compliant science gateways.

In the next section we present the gUSE/WS-PGRADE technology and we

discuss the rationale for adopting this particular SGW framework. In section

3 we present some examples of A&A SGW developed using the gUSE/WS-60

PGRADE technology, then we discuss how to create a VO compliant SGW.

Our results and experiences are discussed in the last section of this paper.

3Wf4Ever: http://www.wf4ever-project.org/
4ER-flow: http://www.erflow.eu
5IVOA: http://www.ivoa.net
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Figure 1: The SHIWA Simulation Platform. A developer designs a scientific workflow and

deploys into the repository. Astronomers connect to a community portal or science gateway

and import and execute the workflow. In this picture the main SHIWA simulation platform

components are presented: the repository and the portal. The main components of these two

services are also identified.

2. SHIWA Workflow technology

Workflows are a powerful mechanism to develop, execute and share scientific

calculations, they can be written in graphical or text environments, and they run65

through a Workflow Management System (WMS): a software infrastructure to

setup and execute the steps specified in the workflow description and to monitor

workflows during their execution. A WMS provides the environment where in

silico experiments can be defined and executed (Lin et al., 2009).

Workflows are usually designed using a modular architecture, each module70

being a workflow task. The dependencies between different modules are explic-

itly defined by the workflows visualisation and design interface (e.g. Figure 2).

In our work, we exploit the results of the SHIWA (SHaring Interoperable

Workflows for large-scale scientific simulations on Available DCIs) Simulation
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Figure 2: An example of meta-workflow. Two WS-PGRADE workflows modules (square box)

are combined with a TAVERNA workflow module to concatenate two strings. Each module

is actually a job to execute on the DCI. Each job communicates with other jobs within the

workflow through job-owned input and output ports. An output port (small grey boxes) of a

job connected with an input port (small green boxes) of a different job is called channel (blue

arrow); these are directed edges of the graph. A single port must be either an input, or an

output port of a given job.

Platform (SSP)6 (Terstyanszky et al., 2014) to implement sharing and exchang-75

ing of workflows between workflow systems and DCI resources through the SSP.

gUSE/WS-PGRADE framework is a widely adopted robust technology. A

number of scientific communities are using this framework to build their SGW

(e.g. CancerGrid gateway, ProSim gateway, Amsterdam Medical Centre gate-

way and the MosGrid gateway) as discussed by Kacsuk et al. (2012).80

The main reason we adopt this technology it that SSP allows workflow devel-

opers to design a workflow that combines together modules written for different

WMS as shown in Figure 2. The SSP adopted the Coarse-grained interoperabil-

ity concept (Kukla et al., 2008): different workflow systems are nested to achieve

interoperability of execution frameworks. In the SSP the non-native workflows85

are used as “black boxes” to be embedded into a so called meta-worflow that

invokes external workflow engines.

6http://www.shiwa-workflow.eu
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From the user’s perspective the most important services offered by the SSP

are shown in Figure 1:

• The SHIWA Repository7: A database where workflows and meta-data90

about workflows can be stored. The database is a central repository for

users to discover and share workflows within and across their communities.

• The SHIWA Portal8: A web portal integrated with the SHIWA Repository

that enables the execution of SHIWA repository workflows.

The SHIWA Portal is based on the gUSE/WS-PGRADE technology. gUSE/WS-95

PGRADE is a collaborative and community oriented application development

environment that allows developers and end–users to develop and share work-

flows, workflow graphs, workflow templates, and ready-to-run workflow applica-

tions. It is based on Liferay9, a portal framework which is highly customizable

due to the adoption of JAVA portlet technology. The main software components100

of gUSE/WS-PGRADE are:

• gUSE is a resource virtualization environment that allows execution of

workflow modules on a variety of DCIs (e.g. desktop grids, clouds, clusters

and web service).

• WS-PGRADE is a workflow engine (Kacsuk, 2011) that offers generic105

services to handle distribution, monitoring and execution of workflows

modules.

WS-PGRADE is the Master Workflow System of the SHIWA Portal, work-

flows developed using WS-PGRADE are called native workflows. However, SSP

is not limited in executing only native workflows, but thanks to the “Grid Ex-110

ecution Management for Legacy Code Applications” (GEMLCA) job wrapper

(Delaitre et al., 2005), it is able to run workflows written using differ workflow

7http://shiwa-repo.cpc.wmin.ac.uk
8http://shiwa-portal2.cpc.wmin.ac.uk/liferay-portal-6.1.0
9http://www.liferay.com

6

http://shiwa-repo.cpc.wmin.ac.uk
http://shiwa-portal2.cpc.wmin.ac.uk/liferay-portal-6.1.0
http://www.liferay.com


languages requiring different WMSs (non-native workflows). A meta-workflow

is a workflow that involves both native and non-native workflows as its con-

stituent parts. The ability to design and execute meta-workflows is a peculiar115

characteristic of SSP and we will use it to develop our SGWs and portal.

Through the SHIWA Portal a scientist can define and run simulations on

various DCIs, including the European Grid Infrastructure, but also local clusters

and Cloud infrastructures (see Figure 1). The portal (via third party workflow

engines) provides support for a number of commonly used academic workflow120

engines (e.g MOTEUR (Glatard et al., 2008), Taverna, Kepler) and it can be

extended with other engines.

In Figure 2, we present an example of meta-workflow where a Taverna based

module is combined with WS-PGRADE native workflows.

The generic WS-PGRADE portal instance is easily customizable into a re-125

search domain specific science gateway thanks to a particular portal extension

called Application Specific Module (ASM) (Balasko et al., 2010). ASM con-

sists of two components: a) a script-layer used for installing different parts of

the module (e.g. data tables, services, portlets) and b) the Java-layer used as

the Application Programming Interface (API) during the development of the130

web-interface providing programmatically most of the functionalities of gUSE.

Using JAVA portlets it is possible to develop a web user interface to provide

input parameters, to execute applications and to display the results in a user-

friendly way. Each application specific portlet contains the details of the related

underlying workflows.135

Moreover, using the SSP it is possible to design and implement a SGW

able to execute meta-workflows that combine together native and non-native

workflow modules.

3. A&A Science Gateways and workflows

In the last decade, scientific workflows are playing an important role in the140

working methodology of the A&A community. The SSP is not the first and only

7



Figure 3: Studying the acceleration of the Universe with the LaSMoG workflow: visual com-

parison of a standard gravity model and a modified gravity model (i.e. without introducing

dark energy) taking advantage of the VisIVO visualisation. Using VisIVO it is possible to plot

3D box from two N-Body simulations at the same redshift that starts from the same initial

conditions. One simulation is a ΛCDM with standard gravity (left) the other is a modified

gravity model (right). In the modified gravity simulation the Cosmic structures collapse at

higher redshift.
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workflow technology used by astronomers, as an example here we can cite the

ESO Reflex, Pegasus and the AstroGrid workflows system (see Schaaff, A. and

Ruiz J.E. (2013) for a more complete discussion on Workflows in A&A).

The European Southern Observatory (ESO10) Recipe flexible execution work-145

bench (Reflex) (Freudling et al., 2013), an environment to automate data reduc-

tion workflows. Reflex is implemented as a package of customized components

for the Kepler (Ludascher et al., 2006) workflow engine. Kepler provides the

graphical user interface to create an executable flowchart-like representation of

the data reduction process. Key features of Reflex are: a rule-based data or-150

ganiser, an infrastructure to re-use results, interactive user interfaces, and a

novel concept to exploit information created during data organisation for the

workflow execution.

Pegasus is a WMS (Deelman et al., 2014) that allows scientists to construct

workflows in abstract terms without worrying about the details of the under-155

lying execution environment. It allows the execution of workflows on different

computing infrastructures (from local cluster up to DCIs), and it is widely used

both in the framework of the OSG and of the XSEDE HPC infrastructure.

The AstroGrid Workflow System was developed in the framework of the UK

Virtual Observatory System. It was a multi-user batch system for the execution160

of potentially long-running astronomical workflows based on a description file

that lists the remote applications and data to use. It was based on the Common

Execution Architecture Web service interface, message protocols, and formats

and it used the VO standards to execute tasks on VO compliant applications

and resources.165

These systems differ in terms of workflow description languages and work-

flow engines. This often has a profound impact on the resulting workflow per-

formance, development effort, management and portability. It takes significant

effort and time to learn how to use workflow systems, and requires specific

expertise and skills to develop and maintain workflows. Moreover, workflows170

10ESO: http://www.eso.org
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developed in one system cannot be executed using a different one.

As Pegasus WMS, the SSP allows to execute workflows tasks on different

resources and to develop SGWs, but it also provides a workflow repository able

to store workflows form different WMS and that can be used as a mean of work-

flows preservation. More importantly, differently from any other platform, the175

SSP allows workflows interoperability giving the possibility to re-use workflows

written using differ WMS.

Using the SSP and the gUSE/WS-PGRADE technology we developed sev-

eral SGWs and associated workflows focused on different A&A applications

(Becciani et al., 2014a) as below:180

1. COMCAPT (Capture of comets from the interstellar space by the Galac-

tic tide), provided by the Astronomical Institute of Slovak Academy of

Sciences. It is a SGW that focuses on applications related to studies of

small bodies in the Solar system.

2. FRANEC (Frascati Raphson Newton Evolutionary Code), provided by185

INAF - Osservatorio Astronomico di Teramo. It allows to execute stellar

evolutionary code on a DCI (Taffoni et al., 2010).

3. LaSMoG (Large Simulation for Modified Gravity), provided by the Uni-

versity of Portsmouth (UK) (Zhao et al., 2011). It supports the LaSMoG

consortium to investigate large-scale modified gravity models, more specif-190

ically inspecting datasets to discover anomalies by comparing suitably with

datasets coming from standard models (i.e. dark energy models).

4. MESTREAM (Modelling the dynamical Evolution of meteoroid stream),

provided by Astronomical Institute of Slovak Academy of Sciences. This

SGW allows Astronomers to calculate the dynamical Evolution of mete-195

oroid streams.

5. Planck (Simulations of the ESA Planck satellite mission), provided by

INAF - Osservatorio Astronomico di Trieste. This SGW is designed to

execute simulation of Planck satellite mission developing a web application

of the Planck simulation software (Reinecke et al., 2006).200

10



6. VisIVO (Visualisation Interface for the Virtual Observatory) (Sciacca et al.,

2013), provided by INAF - Osservatorio Astrofisico di Catania (Figure 4).

It provides visualisation and data management services to the scientific

community exploiting the functionalities of VisIVO (Becciani et al., 2010).

Each SGW offers role-based authorization modules and supports login with205

user name and password. We implemented four roles: guests, standard and

advanced users, and finally administrators. The guest is able only to navigate

the public web pages with gateway description and general information and it

is able to request an official account. The standard user connects also to the

web applications that allow to execute the codes. In each gateway we develop210

a JAVA portlet dedicated to the application that allow only to configure the

input parameters and execute/monitor the job thanks to a dedicated simpli-

fied web interface (see Figure 4). Advanced users are not limited to access

the web applications but they can also access additional features to create and

change workflows and to set configurations of grid infrastructures. Finally, ad-215

ministrators are additionally enabled to manage all credentials, individual users,

organizations, and user communities.

Each SGW is configured to access different computing and storage resources.

Commonly all of them can execute workflows on EMI grid infrastructures11 com-

puting resources dealing with different Virtual Organisations, as astro.vo.eu-220

egee.org (European astronomical VO), INAF (Italian national VO for astron-

omy) VOCE (Virtual Organisation for Central Europe). However, the SGWs

are not limited to the use of grid DCIs, thanks to the gUSE services they can

execute workflows modules on different computing and storage resources includ-

ing local clusters or cloud resources at the same time. This is particularly useful225

to avoid submission latency problems when executing simple workflow modules

that do not require strong computing resources.

Finally each SGW is equipped with a Data Management portlet (see Figure

11EMI grid infrastructures: http://www.eu-emi.eu/
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Figure 4: VisIVO Science Gateway provides visualisation and data management services to

the scientific community thanks to the VisIVO visualisation framework.

5) that allows users to access their private staging area where input and output

files are produced. The Data Management portlet interfaces not only with the230

local server filesystem but also with EMI LFC distributed filesystem (Laure

et al., 2006).

4. VO oriented workflows

While the Astro SGWs described before are strictly computing oriented, As-

tronomers need also to access data using IVOA standards and services. Com-235

monly workflows orchestrate computing and storage tasks running on a com-

puting infrastructure (a local server, a cluster or a DCI). However, also the VO

is a DCI: it is a data and services infrastructure. For this reason, we adopt VO

workflow components, that allow to create workflows implementing a high level

of modularity combining together different DCIs.240

12



Figure 5: Data Management portlet: it allows to access users private staging area, input and

output files.

In the framework of Workflow4Ever project12, the Astrophysics community

has developed more than 50 workflows using Taverna13 (Wolstencroft et al.,

2013) and the AstroTaverna14 plugin (Schaaff et al., 2012). AstroTaverna in-

tegrates existing Virtual Observatory web services as first-class building blocks

in Taverna workflows (e.g. to search a registry, to add identified services to the245

workflow, to manipulate data in form of VOTables15, and to convert coordi-

nates). These workflows are used to interact with data, focusing on searching

and getting data in distributed database systems, manipulating data or per-

forming simple data analysis tasks.

To develop a SGW that allows also to implement data access we use SSP250

capability of executing non-native workflows.

AstroTaverna provides the means to build A&A workflows using Virtual

Observatory discovery services including manipulation of VOTables (based on

12Workflow4Ever project: http://www.wf4ever-project.org
13Taverna: http://www.taverna.org.uk
14AstroTaverna: http://amiga.iaa.es/p/290-astrotaverna.htm
15VOTable standard: http://www.ivoa.net/documents/VOTable/
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STIL tool set). It integrates SAMP-enabled software (Taylor et al., 2012),

allowing data exchange and communication among local VO tools, as well as255

the ability to execute ALADIN (Bonnarel et al., 2000) scripts and macros.

One AstroTaverna enabled task can be integrated within a WS-PGRADE

workflow as a non-native workflow. AstroTaverna workflows are light weight

operations that are normally implemented by an individual simple workflow

module. In this paper we refer to AstroTaverna data-oriented modules as260

VO-modules. Any VO-module input/output can be connected to native WS-

PGRADE modules as shown in Figure 2.

We import the AstroTaverna VO-Modules into the SSP repository and we

develop a “library” of VO-Modules to use as components of more complex work-

flows that involves both computing and VO DCIs. The VO-modules does not265

need the use of computing resources as they are simple to operate and not

computing intensive.

There are more than 50 VO-modules stored in MyExperiment Taverna work-

flow repository16, we tested some of them and we extensively executed workflows

manipulating the VOTable format is several ways. Searching and using VO ser-270

vices is also possible, for example AstroTaverna allows to make ConeSearch

queries17 on any VO Service (e.g. Hubble Space Telescope VO Services).

At present IVOA standards for theoretical simulations (including microsim-

ulations, as are usually named in the VO the simulations implemented in our

SGWs) are mature and probably it is (or will be) feasible to integrate also275

the microsimulations standards into our SGWs, by taking advantage of the

SimDM18 and, possibly, SimDAL specifications (the latter one is still under

discussion). In this case it will be necessary to develop a new set of workflows

modules using AstroTaverna plugin dedicated to microsimulations.

The IVOA Grid and Web Service working group discussed in details the280

16MyExperiment Taverna workflow repository: http://www.myexperiment.org
17A Cone is a circular region on the sky defined by a sky position and a radius around that

position. A Cone Search is a query for information related to a Cone
18SimDM: http://www.ivoa.net/documents/SimDM/

14

http://www.myexperiment.org
http://www.ivoa.net/documents/SimDM/


use of Workflows in the VO (Schaaff, A. and Ruiz J.E., 2013). They identify

different ways in which workflows can be used that implies different levels of

involvement of the VO services, from the simple case when a pipeline requests

VO-compliant data, up to the complex case when the VO is used to drive the

job remotely and manage the results.285

To this extent, different VO standards or recommendations are involved. In

fact to drive jobs remotely from the VO it is al lest necessary to rely on a Single-

Sign-On system (SSO) (Rixon G. and Graham M., 2008) and to the Universal

Worker Service (UWS) (Harrison P. and Rixon G., 2014). The SSO is necessary

to authenticate and authorise the users on the remote resources while the UWS290

pattern defines how to manage asynchronous execution of jobs on the remote

systems.

Moreover, to manage the results of the workflows execution it is necessary

to access a distributed storage. In the VO framework the interface over the

distributed storage is the VOSpace (Graham et al., 2014).295

On the other hand, in our work we focus on the interoperability aspects be-

tween computing and VO DCIs. Our workflows use the computing and storage

resource offered by computing infrastructures and the VO services as regards

data access and manipulation. The SGWs developed using SSP can be config-

ured to access a variety of DCIs thanks to the gUSE component. Actually it is300

missing a gUSE UWS plug-in, however at this stage the DCIs we are using does

not require it. The SGWs allow to implement different SSO systems, we choose

the one that are compliant with the VO SSO specifications in our case we are

using TLS with passwords and openID. The SSP allows to implement also other

SSO mechanisms some of them as SAML/Shibboleth are under discussion by305

the Grid and Web Service working group.

The SSP provides a methods for credential delegation used to delegate a

user’s credentials to remote resources for example to allow data transfer on

behalf of the user. This SSP capability could be integrated to be compliant

with the IVOA credential delegation protocol.310

A key aspect to increase the interoperability between with the VO is the

15



possibility to manage the results of the workflows execution also to the VO.

The SSP is not providing a VOspace interface or client that allows to store data

on VOspace compliant distributed storage. A gUSE plug-in will be developed

to overcome this limitation.315

5. Discussion and Conclusions

In the last four years, a large effort has been devoted to develop SGWs and

workflows for A&A applications. Our efforts allow to set up a number of SGWs

that provide the A&A community with a set of tools towards facilitating the

use of DCIs by demonstrating benefits of using this approach in doing science.320

Developing a SGW poses some important challenges, regarding DCI access,

adoption of a suitable web technology, user authorisation and authentication

and so on. In practice, the major problem in the development of a SGW can be

summarised as how to rapidly deploy scientific applications on computational

resources and expose these applications as web services to scientists.325

In this paper, we adopt a web framework that simplifies the development of

SGW: the SSP. This framework allows developers to host their domain-specific

software application and rapidly generate SGW interfaces to them. The ap-

plication must be structured in terms of workflows. Workflows encapsulate a

formal specification of a scientific process and they highlight and automate the330

analytical and computational steps of any scientific application.

According to our experiences, SSP provides a stable and secure framework

for developers that takes care of all the problems related to the interfacing with

DCIs, including the web development and the applications porting. It is widely

used by various scientific communities (Kacsuk et al., 2012) and it allows to335

deploy SGWs that implement meta-workflows.

This framework allows to select the computing and storage back–end of the

SGWs according to the computing and storage needs of the single tasks of

the application or workflow module. We tested in particular local computing

clusters and Grid DCI resources, combining both of them to optimise workflows340

16



performances.

Thanks to SSP, workflows and portlets have been built and integrated into

the SGWs and they have been successfully made available to users. The new

SGWs enable researchers to facilitate the usage of large scale computing sys-

tem as DCI for exploring a wide range of parameter values and comparing the345

outcomes.

From our experience in building SGWs, we believe that SSP captures a

common pattern in the software architecture of SGWs and can be applied to a

variety of different applications.

Bearing in mind that the main aim of the International VO Alliance is to350

make both observational and theoretical data more easily accessible to the whole

scientific community an important aspect regards the integration of the VO data

infrastructure within the A&A SGWs. Thanks to the meta-workflow capability

of SSP, we are able to implement AstroTaverna modules into our gateways giving

the possibility to create a SGW able to access and produce data using VO tools355

and services.

A workflow written under different WMS can be recycled allowing us to

deploy AstroTaverna workflows thus optimising our efforts in achieving VO-

compliant SGWs. Although the major obstacle of workflow re-cycling is that

workflow systems are not normally compatible, our adoption of SSP framework360

allows to overcome this limitation. We notice that this approach improves effi-

ciency and reliability by reusing tested methodologies, it increases the lifetime

of workflows and it reduces development time for new workflows and conse-

quently SGWs. Interoperability among workflow systems does not only permit

the development and enhancement of large-scale and comprehensive workflows,365

but also reduces the existing gap between different DCIs, and consequently pro-

motes cooperation among research communities exploiting these DCIs.

In the framework of the ER-flow project19, we have received a very positive

feedback from the SGW users showing that this approach is a promising towards

19ER-flow project: http://www.erflow.eu
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exploiting SGWs and Workflows for A&A. However more work is necessary to370

improve SGWs functionalities. The planned future developments for the A&A

SGWs in the framework of the Italian Virtual Observatory initiative VObs.it,

are the following:

• Cloud infrastructures. We wish to include new DCIs as SGW back-end, in

particular we would like to extensively test cloud infrastructure. Our aim375

is to test the EGI Federated Cloud20 infrastructure and services based on

OpenStack cloud middleware.

• Virtual Observatory. We wish to include a set of VO services into our

SGWs in particular we would like to develop a TOPCAT visualisation

portlet and to implement SAMP technology to make the SGWs com-380

municate directly with the TOPCAT installed in the user desktop when

available. We will provide a gUSE plugin to access VOspace compliant

distributed storage.

• New SSP WMS. We would like to add new workflows engine to SSP. Such

SSP extensions are important to translate between workflow languages385

and facilitate the embedding of workflows into larger workflows even when

those are written in different languages and require different interpreters

for execution (non-native workflow). In particular we would like to imple-

ment Kepler exertions to develop data reduction oriented SGWs based on

ESO Reflex.390

Recently a federation of Astrophysics-oriented science gateways, named STAR-

net, has been designed and implemented (Becciani et al., 2014b). STARnet is

based on SHIWA technology and it envisages sharing a set of services for au-

thentication, a common and distributed computing infrastructure (clusters or

DCIs), data archives and workflow repositories. The first implementation of395

STARnet provides a set of SGWs and workflows for different A&A applications

20EGI Federated Cloud: http://go.egi.eu/cloud
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and it involves a number of European institutions.
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