5,266 research outputs found

    Quantum electrodynamics of relativistic bound states with cutoffs

    Full text link
    We consider an Hamiltonian with ultraviolet and infrared cutoffs, describing the interaction of relativistic electrons and positrons in the Coulomb potential with photons in Coulomb gauge. The interaction includes both interaction of the current density with transversal photons and the Coulomb interaction of charge density with itself. We prove that the Hamiltonian is self-adjoint and has a ground state for sufficiently small coupling constants.Comment: To appear in "Journal of Hyperbolic Differential Equation

    Formation of Ejecta and Dust Pond Deposits on Asteroid Vesta

    Get PDF
    Dust and melt ponds have been studied on planetary bodies including Eros, Itokawa, and the Moon. However, depending on the nature of the regolith material properties and the location of the planetary body, the formation mechanism of the ponded features varies. On Eros and Itokawa, ponded features are formed from dry regolith materials whereas on the Moon similar features are thought to be produced by ejecta melt. On the surface of Vesta, we have identified type 1, ejecta ponds, and type 2, dust ponds. On Vesta type 1 pond are located in the vicinity of ejecta melt of large impact craters. The material is uniformly distributed across the crater floor producing smooth pond surfaces which have a constant slope and shallow depth. The hosting crater of melt-like ponds has a low raised rim and is located on relatively low elevated regions. Whereas, the type 2 ponds on Vesta reveal an undulating surface that is frequently displaced from the crater center or extends toward the crater wall with an abruptly changing slope. We suggested that for the production of the type 2 ponds, localized seismic diffusion and volatile-induced fluidization may be responsible for Vesta. Due to Vesta's large size (in comparison to Eros and Itokawa), the surface may have experienced local-scale rare high-amplitude seismic diffusion which was sufficient to drift fine material. Similarly, short-lived volatile activities were capable to transfer dusty material on to the surface. Segregation and smoothing of transferred material lack further surface activities, hindering the formation of smooth morphology

    IL-33 expression in response to SARS-CoV-2 correlates with seropositivity in COVID-19 convalescent individuals

    Get PDF
    Our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still developing. We perform an observational study to investigate seroprevalence and immune responses in subjects professionally exposed to SARS-CoV-2 and their family members (155 individuals; ages 5-79 years). Seropositivity for SARS-CoV-2 Spike glycoprotein aligns with PCR results that confirm the previous infection. Anti-Spike IgG/IgM titers remain high 60 days post-infection and do not strongly associate with symptoms, except for fever. We analyze PBMCs from a subset of seropositive and seronegative adults. TLR7 agonist-activation reveals an increased population of IL-6+TNF-IL-1β+ monocytes, while SARS-CoV-2 peptide stimulation elicits IL-33, IL-6, IFNa2, and IL-23 expression in seropositive individuals. IL-33 correlates with CD4+ T cell activation in PBMCs from convalescent subjects and is likely due to T cell-mediated effects on IL-33-producing cells. IL-33 is associated with pulmonary infection and chronic diseases like asthma and COPD, but its role in COVID-19 is unknown. Analysis of published scRNAseq data of bronchoalveolar lavage fluid (BALF) from patients with mild to severe COVID-19 reveals a population of IL-33-producing cells that increases with the disease. Together these findings show that IL-33 production is linked to SARS-CoV-2 infection and warrant further investigation of IL-33 in COVID-19 pathogenesis and immunity

    Mass wasting triggered by seasonal CO<sub>2</sub> sublimation under Martian atmospheric conditions: Laboratory experiments

    Get PDF
    Sublimation is a recognized process by which planetary landscapes can be modified. However, interpretation of whether sublimation is involved in downslope movements on Mars and other bodies is restricted by a lack of empirical data to constrain this mechanism of sediment transport and its influence on landform morphology. Here we present the first set of laboratory experiments under Martian atmospheric conditions which demonstrate that the sublimation of CO2 ice from within the sediment body can trigger failure of unconsolidated, regolith slopes and can measurably alter the landscape. Previous theoretical studies required CO2 slab ice for movements, but we find that only frost is required. Hence, sediment transport by CO2 sublimation could be more widely applicable (in space and time) on Mars than previously thought. This supports recent work suggesting CO2 sublimation could be responsible for recent modification in Martian gullies

    Constraints on new interactions from neutron scattering experiments

    Full text link
    Constraints for the constants of hypothetical Yukawa-type corrections to the Newtonian gravitational potential are obtained from analysis of neutron scattering experiments. Restrictions are obtained for the interaction range between 10^{-12} and 10^{-7} cm, where Casimir force experiments and atomic force microscopy are not sensitive. Experimental limits are obtained also for non-electromagnetic inverse power law neutron-nucleus potential. Some possibilities are discussed to strengthen these constraints.Comment: 18 pages, 3 figure

    UV friendly T-parity in the SU(6)/Sp(6) little Higgs model

    Full text link
    Electroweak precision tests put stringent constraints on the parameter space of little Higgs models. Tree-level exchange of TeV scale particles in a generic little Higgs model produce higher dimensional operators that make contributions to electroweak observables that are typically too large. To avoid this problem a discrete symmetry dubbed T-parity can be introduced to forbid the dangerous couplings. However, it was realized that in simple group models such as the littlest Higgs model, the implementation of T-parity in a UV completion could present some challenges. The situation is analogous to the one in QCD where the pion can easily be defined as being odd under a new Z2Z_2 symmetry in the chiral Lagrangian, but this Z2Z_2 is not a symmetry of the quark Lagrangian. In this paper we examine the possibility of implementing a T-parity in the low energy SU(6)/Sp(6)SU(6)/Sp(6) model that might be easier to realize in the UV. In our model, the T-parity acts on the low energy non-linear sigma model field in way which is different to what was originally proposed for the Littlest Higgs, and lead to a different low energy theory. In particular, the Higgs sector of this model is a inert two Higgs doublets model with an approximate custodial symmetry. We examine the contributions of the various sectors of the model to electroweak precision data, and to the dark matter abundance.Comment: 21 pages,4 figures. Clarifications added, typos corrected and references added. Published in JHE

    Multi-Photon Signals from Composite Models at LHC

    Full text link
    We analyze the collider signals of composite scalars that emerge in certain little Higgs models and models of vectorlike confinement. Similar to the decay of the pion into photon pairs, these scalars mainly decay through anomaly-induced interactions into electroweak gauge bosons, leading to a distinct signal with three or more photons in the final state. We study the standard model backgrounds for these signals, and find that the LHC can discover these models over a large range of parameter space with 30 fb1^{-1} at 14 TeV. An early discovery at the current 7 TeV run is possible in some regions of parameter space. We also discuss possibilities to measure the spin of the particles in the γγ\gamma \gamma and ZγZ\gamma decay channels.Comment: 18 pages, LaTe

    Testbeam and Laboratory Characterization of CMS 3D Pixel Sensors

    Full text link
    The pixel detector is the innermost tracking device in CMS, reconstructing interaction vertices and charged particle trajectories. The sensors located in the innermost layers of the pixel detector must be upgraded for the ten-fold increase in luminosity expected with the High- Luminosity LHC (HL-LHC) phase. As a possible replacement for planar sensors, 3D silicon technology is under consideration due to its good performance after high radiation fluence. In this paper, we report on pre- and post- irradiation measurements for CMS 3D pixel sensors with different electrode configurations. The effects of irradiation on electrical properties, charge collection efficiency, and position resolution of 3D sensors are discussed. Measurements of various test structures for monitoring the fabrication process and studying the bulk and surface properties, such as MOS capacitors, planar and gate-controlled diodes are also presented.Comment: 14 page

    Electromagnetic Form Factors of the Nucleon in an Improved Quark Model

    Get PDF
    Nucleon electromagnetic form factors are studied in the cloudy bag model (CBM) with center-of-mass and recoil corrections. This is the first presentation of a full set of nucleon form factors using the CBM. The center of mass motion is eliminated via several different momentum projection techniques and the results are compared. It is found that the shapes of these form factors are significantly improved with respect to the experimental data if the Lorentz contraction of the internal structure of the baryon is also appropriately taken into account.Comment: revtex, 28 pages, 8 ps figs include
    corecore