6,093 research outputs found

    Algorithmic Verification of Asynchronous Programs

    Full text link
    Asynchronous programming is a ubiquitous systems programming idiom to manage concurrent interactions with the environment. In this style, instead of waiting for time-consuming operations to complete, the programmer makes a non-blocking call to the operation and posts a callback task to a task buffer that is executed later when the time-consuming operation completes. A co-operative scheduler mediates the interaction by picking and executing callback tasks from the task buffer to completion (and these callbacks can post further callbacks to be executed later). Writing correct asynchronous programs is hard because the use of callbacks, while efficient, obscures program control flow. We provide a formal model underlying asynchronous programs and study verification problems for this model. We show that the safety verification problem for finite-data asynchronous programs is expspace-complete. We show that liveness verification for finite-data asynchronous programs is decidable and polynomial-time equivalent to Petri Net reachability. Decidability is not obvious, since even if the data is finite-state, asynchronous programs constitute infinite-state transition systems: both the program stack and the task buffer of pending asynchronous calls can be potentially unbounded. Our main technical construction is a polynomial-time semantics-preserving reduction from asynchronous programs to Petri Nets and conversely. The reduction allows the use of algorithmic techniques on Petri Nets to the verification of asynchronous programs. We also study several extensions to the basic models of asynchronous programs that are inspired by additional capabilities provided by implementations of asynchronous libraries, and classify the decidability and undecidability of verification questions on these extensions.Comment: 46 pages, 9 figure

    A practical high current 11 MeV production of high specific activity 89Zr

    Get PDF
    Introduction Zr-89 is a useful radionuclide for radiolabeling proteins and other molecules.1,2 There are many reports of cyclotron production of 89Zr by the 89Y (p,n) reaction. Most irradiations use thin metal backed deposits of Y and irradiation currents up to 100 µA or thicker amounts of Y or Y2O3 with ~ 20 µA irradiations.3,4 We are working to develop high specific activity 89Zr using a low energy 11 MeV cyclotron. We have found that target Y metal contains carrier Zr and higher specific activities are achieved with less Y. The goal of this work was to optimize yield while minimizing the amount of Y that was irradiated. Material and Methods All irradiations were done using a Siemens Eclipse 11 MeV proton cyclotron. Y foils were used for the experiments described here. Y2O3 was tried and abandoned due to lower yield and poor heat transfer. Yttrium metal foils from Alfa Aesar, ESPI Metals and Sigma Aldrich, 0.1 to 1 mm in thickness, were tested. Each foil was irradiated for 10 to 15 minutes. The targets to hold the Y foils were made of aluminum and were designed to fit within the “paper burn” unit of the Siemen’s Eclipse target station, allowing the Y target body to be easily inserted and removed from the system. Several Al targets of 2 cm diam. and 7.6 cm long were tested with the face of the targets from 11, 26 or 90o relative to the beam to vary watts cm−2 on the foil. The front of the foils was cooled by He convection and the foil backs by conduction to the Al target body. The target body was cooled by conduction to the water cooled Al sleeve of the target holder. Results and Conclusion The best target was two stacked, 0.25 mm thick, foils to stop beam. 92% of the 89Zr activity was in the front 0.25 mm Y foil. With the greatest slant we could irradiate up to 30 µA of beam on tar-get. However, the 13×30 mm dimensions of the foil was more mass (0.41 g) and lower specific activity than was desired. Redesign of the target gave a target 90o to the beam with 12×12 mm foils (0.15 g/foil) that were undamaged with up to 30 µA irradiation when two foils were used. This design has a reduction in beam at the edges of ~10%. With this design, a single Y foil, 0.25 mm thick sustained over 31 µA of beam and a peak power on target of 270 watts cm−2. The product was radionuclidically pure 89Zr after all 89mZr and small amounts of 13N produced from oxygen at the surface had decayed (TABLE 1). Our conclusion is that the optimum target is a single 0.25 mm thick Y foil to obtain the greatest specific activity at this proton energy. This produces 167 MBq of 89Zr at EOB with a 15 minute and 31 µA irradiation. We are continuing to redesign the clamp design to reduce losses at the edge of the beam

    Pure Samples of Quark and Gluon Jets at the LHC

    Get PDF
    Having pure samples of quark and gluon jets would greatly facilitate the study of jet properties and substructure, with many potential standard model and new physics applications. To this end, we consider multijet and jets+X samples, to determine the purity that can be achieved by simple kinematic cuts leaving reasonable production cross sections. We find, for example, that at the 7 TeV LHC, the pp {\to} {\gamma}+2jets sample can provide 98% pure quark jets with 200 GeV of transverse momentum and a cross section of 5 pb. To get 10 pb of 200 GeV jets with 90% gluon purity, the pp {\to} 3jets sample can be used. b+2jets is also useful for gluons, but only if the b-tagging is very efficient.Comment: 19 pages, 16 figures; v2 section on formally defining quark and gluon jets has been adde

    I-fibrinogen as an oncophilic radiodiagnostic agent: distribution kinetics in tumour-bearing mice.

    Get PDF
    Fibrinogen radioiodinated by the iodine monochloride method was tested as a tumour radiodiagnostic agent in mice. The I-fibrinogen cleared from the blood of tumour-bearing mice more rapidly than from that of normal mice, but it cleared from the whole body more slowly, suggesting it accumulated in a substantial tumour-related compartment in the abnormal mice. The tumour concentration steadily increased for 4 h after injection, at which time it reached a peak concentration of 11-4% of the injected dose/g. This concentration was higher than the peak concentration for Ga-citrate (not reached until 24 h) or any other oncophilic radiopharmaceutical tested in this tumour model. The early accumulation is consistent with the use of 123I as a tracer label for fibrinogen. A combination of the large tumour concentration of I-fibrinogen, an increased catabolic rate induced by chemical modification, and the exceptional nuclear properties of 123I for scintigraphic imaging, could lead to a very useful radiodiagnostic procedure for cancer

    Challenges and achievements in the utilization of the health system among adolescents in a region of Burkina Faso particularly affected by poverty

    Get PDF
    Objective: Healthcare for adolescents receives little attention in low-income countries globally despite their large population share in these settings, the importance of disease prevention at these ages for later life outcomes and adolescent health needs differing from those of other ages. We therefore examined healthcare need and use among adolescents in rural Burkina Faso to identify reasons for use and gaps in provision and uptake. Methods: We interviewed 1,644 adolescents aged 12-20 living in rural northwestern Burkina Faso in 2017. Topics included healthcare need and satisfaction with care provided. We calculated response-weighted prevalence of perceived healthcare need and utilization, then conducted multivariable regression to look at predictors of need, realized access and successful utilization based on the Andersen and Aday model. Results: 43.7 [41.2 - 46.0] % of participants perceived need for healthcare at least once in the preceding 12 months - 52.0 [48.1 - 56.0] % of females and 35.6 [32.5 - 39.0] % of males. Of those with perceived need, 92.6 [90.0 - 94.3] % were able to access care and 79.0 [75.6 - 82.0] % obtained successful utilization. Need was most strongly predicted by gender, education and urbanicity, while predictors of successful use included household wealth and female guardian’s educational attainment. Conclusion: Healthcare utilization among adolescents is low in rural Burkina Faso, but mostly thought of as sufficient with very few individuals reporting need that was not linked to care. Future objective assessment of healthcare need could help identify whether our results reflect a well-functioning system for these adolescents, or one where barriers lead to low awareness of needs or low expectations for service provision

    The Word Problem for Omega-Terms over the Trotter-Weil Hierarchy

    Get PDF
    For two given ω\omega-terms α\alpha and β\beta, the word problem for ω\omega-terms over a variety V\boldsymbol{\mathrm{V}} asks whether α=β\alpha=\beta in all monoids in V\boldsymbol{\mathrm{V}}. We show that the word problem for ω\omega-terms over each level of the Trotter-Weil Hierarchy is decidable. More precisely, for every fixed variety in the Trotter-Weil Hierarchy, our approach yields an algorithm in nondeterministic logarithmic space (NL). In addition, we provide deterministic polynomial time algorithms which are more efficient than straightforward translations of the NL-algorithms. As an application of our results, we show that separability by the so-called corners of the Trotter-Weil Hierarchy is witnessed by ω\omega-terms (this property is also known as ω\omega-reducibility). In particular, the separation problem for the corners of the Trotter-Weil Hierarchy is decidable

    OpenVirtualObjects: An open set of standardized and validated 3D household objects for virtual reality-based research, assessment, and therapy

    Get PDF
    Virtual reality (VR) technology provides clinicians, therapists, and researchers with new opportunities to observe, assess, and train behavior in realistic yet well-controlled environments. However, VR also comes with a number of challenges. For example, compared to more abstract experiments and tests on 2D computer screens, VR-based tasks are more complex to create, which can make it more expensive and time-consuming. One way to overcome these challenges is to create, standardize, and validate VR content and to make it openly available for researchers and clinicians. Here we introduce the OpenVirtualObjects (OVO), a set of 124 realistic 3D household objects that people encounter and use in their everyday lives. The objects were rated by 34 younger and 25 older adults for recognizability, familiarity, details (i.e., visual complexity), contact, and usage (i.e., frequency of usage in daily life). All participants also named and categorized the objects. We provide the data and the experiment- and analysis code online. With OVO, we hope to facilitate VR-based research and clinical applications. Easy and free availability of standardized and validated 3D objects can support systematic VR-based studies and the development of VR-based diagnostics and therapeutic tools
    corecore