4,063 research outputs found

    Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    Get PDF
    Author Posting. © 2005 Author(s). This work is licensed under a Creative Commons License. The definitive version was published Biogeosciences 2 (2005): 141-157, doi:10.5194/bg-2-141-2005.Submarine groundwater discharge was quantified by a variety of methods for a 4-day period during the early summer of 2004, in Salt Pond, adjacent to Nauset Marsh, on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. The data suggest that less than one quarter of the discharge in the vicinity of Salt Pond happened within the pond itself, while three quarters or more of the discharge occurred immediately seaward of the pond, either in the channel or in adjacent regions of Nauset Marsh. Much of this discharge, which maintains high radon activities and low salinity, is carried into the pond during each incoming tide. A box model was used as an aid to understand both the rates and the locations of discharge in the vicinity of Salt Pond. The model achieves a reasonable fit to both the salinity and radon data assuming submarine groundwater discharge is fresh and that most of it occurs either in the channel or in adjacent regions of Nauset Marsh. Salinity and radon data, together with seepage meter results, do not rule out discharge of saline groundwater, but suggest either that the saline discharge is at most comparable in volume to the fresh discharge or that it is depleted in radon. The estimated rate of fresh groundwater discharge in the vicinity of Salt Pond is 3000-7000 m3 d-1. This groundwater flux estimated from the radon and salinity data is comparable to a value of 3200-4500 m3 d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 2004), although the model predicts this rate of discharge to the pond whereas our data suggest most of the groundwater bypasses the pond prior to discharge. Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to better constrain the rate of groundwater discharge seaward of Salt Pond.Financial support was provided by the US Geological Survey and by National Science Foundation grant #OCE-0346933 to MAC

    Oxygen-controlled recirculating seepage meter reveals extent of nitrogen transformation in discharging coastal groundwater at the aquifer-estuary interface

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Brooks, T. W., Kroeger, K. D., Michael, H. A., & York, J. K. Oxygen-controlled recirculating seepage meter reveals extent of nitrogen transformation in discharging coastal groundwater at the aquifer-estuary interface. Limnology and Oceanography, 66, (2021): 3055-3069, https://doi.org/10.1002/lno.11858.Nutrient loads delivered to estuaries via submarine groundwater discharge (SGD) play an important role in the nitrogen (N) budget and eutrophication status. However, accurate and reliable quantification of the chemical flux across the final decimeters and centimeters at the sediment–estuary interface remains a challenge, because there is significant potential for biogeochemical alteration due to contrasting conditions in the coastal aquifer and surface sediment. Here, a novel, oxygen- and light-regulated ultrasonic seepage meter, and a standard seepage meter, were used to measure SGD and calculate N species fluxes across the sediment–estuary interface. Coupling the measurements to an endmember approach based on subsurface N concentrations and an assumption of conservative transport enabled estimation of the extent of transformation occurring in discharging groundwater within the benthic zone. Biogeochemical transformation within reactive estuarine surface sediment was a dominant driver in modifying the N flux carried upward by SGD, and resulted in a similar percentage of N removal (~ 42–52%) as did transformations occurring deeper within the coastal aquifer salinity mixing zone (~ 42–47%). Seasonal shifts in the relative importance of biogeochemical processes including denitrification, nitrification, dissimilatory nitrate reduction, and assimilation altered the composition of the flux to estuarine surface water, which was dominated by ammonium in June and by nitrate in August, despite the endmember-based observation that fixed N in discharging groundwater was strongly dominated by nitrate. This may have important ramifications for the ecology and management of estuaries, since past N loading estimates have generally assumed conservative transport from the nearshore aquifer to estuary.This work was supported by an award from Delaware Sea Grant (award No. NA100AR4170084 to J.K.Y. and K.D.K.), and by the USGS Coastal and Marine Hazards and Resources Program

    Deciphering the dynamics of inorganic carbon export from intertidal salt marshes using high-frequency measurements

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Chemistry 206 (2018): 7-18, doi:10.1016/j.marchem.2018.08.005.The lateral export of carbon from coastal marshes via tidal exchange is a key component of the marsh carbon budget and coastal carbon cycles. However, the magnitude of this export has been difficult to accurately quantify due to complex tidal dynamics and seasonal cycling of carbon. In this study, we use in situ, high-frequency measurements of dissolved inorganic carbon (DIC) and water fluxes to estimate lateral DIC fluxes from a U.S. northeastern salt marsh. DIC was measured by a CHANnelized Optical Sensor (CHANOS) that provided an in situ concentration measurement at 15-min intervals, during periods in summer (July – August) and late fall (December). Seasonal changes in the marsh had strong effects on DIC concentrations, while tidally-driven water fluxes were the fundamental vehicle of marsh carbon export. Episodic events, such as groundwater discharge and mean sea water level changes, can impact DIC flux through altered DIC concentrations and water flow. Variability between individual tides within each season was comparable to mean variability between the two seasons. Estimated mean DIC fluxes based on a multiple linear regression (MLR) model of DIC concentrations and high-frequency water fluxes agreed reasonably well with those derived from CHANOS DIC measurements for both study periods, indicating that high-frequency, modeled DIC concentrations, coupled with continuous water flux measurements and a hydrodynamic model, provide a robust estimate of DIC flux. Additionally, an analysis of sampling strategies revealed that DIC fluxes calculated using conventional sampling frequencies (hourly to two-hourly) of a single tidal cycle are unlikely to capture a representative mean DIC flux compared to longer-term measurements across multiple tidal cycles with sampling frequency on the order of tens of minutes. This results from a disproportionately large amount of the net DIC flux occurring over a small number of tidal cycles, while most tides have a near-zero DIC export. Thus, high-frequency measurements (on the order of tens of minutes or better) over the time period of interest are necessary to accurately quantify tidal exports of carbon species from salt marshes.This work was funded by NSF Graduate Research Fellowship Program, NSF Ocean Sciences Postdoctoral Fellowship (OCE-1323728), Link FoundationOcean Engineering and Instrumentation Fellowship, National Institute of Science and Technology (NIST no. 60NANB10D024), the USGS LandCarbon and Coastal & Marine Geology Programs, NSF Chemical Oceanography Program (OCE-1459521), NSF Ocean Technology and Interdisciplinary Coordination program (OCE-1233654) and NOAA Science Collaborative (NA09NOS4190153)

    Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean

    Get PDF
    © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Limnology and Oceanography 61 (2016): 1916–1931, doi:10.1002/lno.10347.Dynamic tidal export of dissolved inorganic carbon (DIC) to the coastal ocean from highly productive intertidal marshes and its effects on seawater carbonate chemistry are thoroughly evaluated. The study uses a comprehensive approach by combining tidal water sampling of CO2 parameters across seasons, continuous in situ measurements of biogeochemically-relevant parameters and water fluxes, with high-resolution modeling in an intertidal salt marsh of the U.S. northeast region. Salt marshes can acidify and alkalize tidal water by injecting CO2 (DIC) and total alkalinity (TA). DIC and TA generation may also be decoupled due to differential effects of marsh aerobic and anaerobic respiration on DIC and TA. As marsh DIC is added to tidal water, the buffering capacity first decreases to a minimum and then increases quickly. Large additions of marsh DIC can result in higher buffering capacity in ebbing tide than incoming tide. Alkalization of tidal water, which mostly occurs in the summer due to anaerobic respiration, can further modify buffering capacity. Marsh exports of DIC and alkalinity may have complex implications for the future, more acidified ocean. Marsh DIC export exhibits high variability over tidal and seasonal cycles, which is modulated by both marsh DIC generation and by water fluxes. The marsh DIC export of 414 g C m−2 yr−1, based on high-resolution measurements and modeling, is more than twice the previous estimates. It is a major term in the marsh carbon budget and translates to one of the largest carbon fluxes along the U.S. East Coast.USGS Coastal & Marine Geology Program; U.S. National Science Foundation Grant Number: OCE-1459521; NOAA Science Collaborative Grant Number: NA09NOS4190153; USGS LandCarbon Progra

    OSSE spectral analysis techniques

    Get PDF
    Analysis of the spectra from the Oriented Scintillation Spectrometer Experiment (OSSE) is complicated because of the typically low signal to noise (approx. 0.1 percent) and the large background variability. The OSSE instrument was designed to address these difficulties by periodically offset-pointing the detectors from the source to perform background measurements. These background measurements are used to estimate the background during each of the source observations. The resulting background-subtracted spectra can then be accumulated and fitted for spectral lines and/or continua. Data selection based on various environmental parameters can be performed at various stages during the analysis procedure. In order to achieve the instrument's statistical sensitivity, however, it will be necessary for investigators to develop a detailed understanding of the instrument operation, data collection, and the background spectrum and its variability. A brief description of the major steps in the OSSE spectral analysis process is described, including a discussion of the OSSE background spectrum and examples of several observational strategies

    Sediment transport-based metrics of wetland stability

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geophysical Research Letters 42 (2015): 7992–8000, doi:10.1002/2015GL065980.Despite the importance of sediment availability on wetland stability, vulnerability assessments seldom consider spatiotemporal variability of sediment transport. Models predict that the maximum rate of sea level rise a marsh can survive is proportional to suspended sediment concentration (SSC) and accretion. In contrast, we find that SSC and accretion are higher in an unstable marsh than in an adjacent stable marsh, suggesting that these metrics cannot describe wetland vulnerability. Therefore, we propose the flood/ebb SSC differential and organic-inorganic suspended sediment ratio as better vulnerability metrics. The unstable marsh favors sediment export (18 mg L−1 higher on ebb tides), while the stable marsh imports sediment (12 mg L−1 higher on flood tides). The organic-inorganic SSC ratio is 84% higher in the unstable marsh, and stable isotopes indicate a source consistent with marsh-derived material. These simple metrics scale with sediment fluxes, integrate spatiotemporal variability, and indicate sediment sources.U.S. Geological Survey Coastal and Marine Geology Program; Global Change and Land Use Progra

    Tracking and imaging gamma ray experiment (TIGRE) for 1 to 100 MEV gamma ray astronomy

    Get PDF
    A large international collaboration from the high energy astrophysics community has proposed the Tracking and Imaging Gamma Ray Experiment (TIGRE) for future space observations. TIGRE will image and perform energy spectroscopy measurements on celestial sources of gamma rays in the energy range from 1 to 100 MeV. This has been a difficult energy range experimentally for gamma ray astronomy but is vital for the future considering the recent exciting measurements below 1 and above 100 MeV. TIGRE is both a double scatter Compton and gamma ray pair telescope with direct imaging of individual gamma ray events. Multi‐layers of Si strip detectors are used as Compton and pair converters CsI(Tl) scintillation detectors are used as a position sensitive calorimeter. Alternatively, thick GE strip detectors may be used for the calorimeter. The Si detectors are able to track electrons and positrons through successive Si layers and measure their directions and energy losses. Compton and pair events are completely reconstructed allowing each event to be imaged on the sky. TIGRE will provide an order‐of‐magnitude improvement in discrete source sensitivity in the 1 to 100 MeV energy range and determine spectra with excellent energy and excellent angular resolutions. It’s wide field‐of‐view of π sr permits observations of the entire sky for extended periods of time over the life of the mission
    • 

    corecore