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Abstract  
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Our previously reported work has been continued during t h i s  fou r th  re- 
po r t  period. The observations on the f l u x  f low and s t a b i l i t y  performance 
of bare NbTi s t r i p s  have been extended t o  include two  add i t iona l  composi- 
t i ons ,  v iz  Nb-5$ T i  and Nb-l@ T i ,  which have similar c r i t i c a l  temperatures 
but  widely d i f f e r e n t  upper c r i t i c a l  f i e l d s  and normal state r e s i s t i v i t i e s .  
The results obtained with these samples confirm our previous conclusion 
t h a t  hea t  t r a n s f e r  phenomena ra ther  than e l e c t r i c a l  e f f e c t s  ( o r  a f o r t u i -  
tous  in t e rac t ion  between e l e c t r i c a l  and heat t r a n s f e r )  were of primary 
importance i n  understanding premature take-offs .  These r e s u l t s  agree w e l l  
with t h e  observation on temperature f luc tua t ions  as described below. It 1 has a l s o  been shown t h a t  t h e  analysis  of t h e  f i e l d  dependent recovery power 

~ can y i e ld  t h e  hea t  f lux as a funct ion of temperature f o r  t h e  f i lm bo i l ing  
I regime. 

1 

, I 

To improve the ana lys i s  on compound conductors, it i s  necessary t o  
m a k e  d i r e c t  measurements of the magnetoresistance of the s t a b i l i z e r  and of 
t h e  c r i t i c a l  temperature of the superconductor. A new environmental t e s t  
c e l l  constructed f o r  t h i s  purpose i s  described. 

Additional hea t  t r a n s f e r  measurements have been performed and repro- 
(duc ib le  f luc tua t ions  i n  t h e  temperature of the heated sample i n  nucleate 
bo i l ing  have been observed. 
s ipa t ion  and with the height  of t h e  l i q u i d  helium column above t h e  sample. 
I n  the  helium bath i t se l f  (without operating probes) temperature f luctua-  
t i o n s  a r e  l ikewise observed. They are a t  least two orders  of magnitude 
smaller and they a l s o  increase i n  magnitude with t h e  height of t h e  helium 
column. F ina l ly ,  as ant ic ipated,  the t h i n  f i l m  work has proved t o  be a 
,useful  t o o l  f o r  t h e  manufacturing of new hea t  t r a n s f e r  probes. 

They increase i n  magnitude with the power d i s -  
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LEGAL NOTICE 

This  report was prepared as an account of Government sponsored work. 

nor the Commission, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, wi th respect to the accuracy, 

completeness, or usefulness o f  the information contained i n  th is  report, or that the use of 

any information, apparatus, method, or process disclosod in  th is  report may not infringe 

privately awned rights; or 

8. Asaumer any l iab i l i t ies  with respect to the use of, or for damages resulting from the use of 

any information, apparatus, method, or process disclosed i n  th is report. 

As used i n  the above, “person acting on behalf of the Commission” includes any employee or 

controctor of the Commission, or employee of such contractor, t o  the extent that such employee 

or controctor of the Commission, or employee of such contractor prepares, disseminates, or 

provides access to, any information pwsuont t o  his employmsnt or contract w i t h  the Commission, 

or his employment wi th such contractor. 

Neither the United States, 
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MAGNETIC FLUX FLQW AND SUPERCONWCTOR STABILIZATION 

I. INT'RODUCTION 

This fourth quarter ly  report  deals  with invest igat ions on t h e  flux 

flow and s t a b i l i t y  performance of NbTi s t r i p s  with 5 ,  10, and 25 atomic 

percent t i tanium. The data  were analyzed t o  determine if the  premature 

take-off was caused pr incipal ly  by e l e c t r i c a l  o r  heat t r a n s f e r  phenomena. 

Since these  samples have very d i f fe ren t  e l e c t r i c a l  p roper t ies  (upper 

c r i t i c a l  f i e l d ,  f lux flow and normal state resis tances)  and somewhat 

d i f f e r e n t  dimensions, the  probabi l i ty  f o r  an accidental  cor re la t ion  be- 

tween thermal and e l e c t r i c a l  e f fec ts  was s igni f icant ly  reduced. Analysis 

of t h e  recovery data  yielded similar heat t r a n s f e r  c h a r a c t e r i s t i c s  i n  t h e  

f i l m  bo i l ing  regime f o r  a l l  three samples. 

To continue our work on the ana lys i s  of the  current-voltage character-  

i s t i c s  of compound conductors in the  current sharing s t a t e ,  it seemed t o  be 

des i rab le  t o  make d i r e c t  measurements of the  magnetoresistance of the sta- 

b i l i z e r  and c r i t i c a l  temperature measurements of t h e  superconductor. There- 

f o r e ,  a new environmental test  c e l l  has been constructed. 

I n  connection with our studies on bare NbTi ribbons it became i n t e r e s t -  

ing  t o  invest igate  careful ly  temperature f luc tua t ions  i n  l i q u i d  helium. 

These invest igat ions are described i n  the  section on heat t r a n s f e r  measure- 

ments. A very usefu l  t o o l  f o r  these measurements is  a g lass  probe with a 

t h i n  f i l m  metal res is tance layer which contains a carbon r e s i s t o r  f o r  t h e  

temperature measurements. 

t o  be very usefu l  f o r  manufacturing similar probes. 

i s  described i n  d e t a i l .  

Our newly developed t h i n  f i l m  techniques proved 

The probe construction 

1 
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11. FWX FLOW AND STABILITY PErCFORMANCE OF BARE NbTi STRIPS 

M .  S .  Lube11 and D. M .  Kroeger 

A.  Introduction. 

Flux f low studies  similar t o  those performed on a Nb-25$ T i  s t r i p  have 

been made on specimens ro l l ed  from ingots  w i t h  t he  nominal compositions, 

Nb-5'$ T i  and Nb-lO$ T i .  This 'has  enabled us t o  obta in  relevant  data on 

mater ia l s  w i t h  s imilar  c r i t i c a l  temperatures (and only s l i g h t l y  d i f f e r e n t  

from t h a t  of Nb-25$ T i )  but  with s ign i f i can t ly  varying c r i t i c a l  f i e l d s ,  

normal s t a t e  r e s i s t i v i t i e s  and c r i t i c a l  cur ren t  dens i t i e s .  While some d i f -  

ferences i n  d e t a i l  e x i s t ,  t h e  ove ra l l  r e s u l t s  on t h e  5 and 10% T i  a l l o y s  

confirm t h e  previously proposed ideas  and explanations f o r  t h e  anomalous 

dependence of power d i s s ipa t ion  a t  take-off on f i e l d .  

that  ana lys i s  of t h e  f i e l d  dependent recovery power can give the  hea t  f l u x  

It w i l l  a l s o  be shown 

as a func t ion  of temperature f o r  t he  f i l m  bo i l i ng  regime. 

B. Flux Flow Data. 

Figures  1 and 2 show t y p i c a l  flux-flow c h a r a c t e r i s t i c s  f o r  t h e  5% T i  

and 10% T i  samples. The f i e l d  was perpendicular t o  both t h e  current  and 

t h e  sample f a c e  and t h e  voltage drop along a 1 cm segment was measured. 

I n  both samples t h e  V - I c h a r a c t e r i s t i c s  exhibi ted a l i n e a r  region 

f o r  most f i e l d  values. The slope dV/dI i n  t h i s  l i n e a r  region i s  what i s  

known as t h e  flux-flow re s i s t ance  R 
f '  

pf/pn vs H/Hc2(0), where pf i s  t h e  flux-flow r e s i s t i v i t y  determined from 

Rf' Pn 

than Hc2,  and H c z ( 0 )  i s  t h e  upper c r i t i c a l  f i e l d  a t  T = 0. 

Figures  3 and 4 show a p l o t  of 

i s  the  normal s t a t e  r e s i s t i v i t y  measured a t  4.2 K i n  a f i e l d  g r e a t e r  

According t o  

I ideas  developedby K i m  e t  a l .  

p lo t  of pf /pn vs H reaches pf/pn = 1 a t  H = Hc2( 0 ) .  

an  ex t rapola t ion  of t h e  l i n e a r  p a r t  of a 

It was i n  t h i s  f a sh ion  
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2 t h a t  Hcz(0 )  was determined. 

nection with a p l o t  of pf/pn vs H/Hc2(0) f o r  t h e  25% T i  sample, values of 

A s  was remarked i n  a previous repor t  i n  con- 

Pf/Pn’ 1 are 

a l l  f i e l d s  up 

I n  Table 

f o r  a l l  three  

not inconsistent with t h e  requirement t h a t  ( V / I ) f f  < Rn f o r  

t o  Hc2, s ince p 

I a r e  given measured parameters and per t inent  information 

samples, along with calculated values of t h e  Ginsburg-Landau 

i s  a d i f f e r e n t i a l  r e s i s t i v i t y .  f 

parameter K and 7, t h e  electronic-specif ic  heat coef f ic ien t .  The cross 

sec t iona l  area i s  designated by A and t h e  t o t a l  surface area between voltage 

contacts by S. Both 7 and K were calculated from the  GLAG theory i n  t h e  

d i r t y  l i m i t , 3  7 = 3.2 x lom5 and K = 0.29 

Figure 5 shows a comparison f o r  t h e  t h r e e  compositions of c r i t i c a l  

Note t h a t  a l l  th ree  have a current  densi ty  versus reduced f i e l d  H/Hc2. 

peak i n  c r i t i c a l  current density, although i t s  posi t ion and s ize  vary con- 

s iderably with composition, as  does t h e  general  magnitude of Jc. 

a discussion of these points  has not been t h e  object of t h i s  study. The 

However, 

two addi t iona l  compositions with widely d i f f e r i n g  values f o r  such e l e c t r i c a l  

and J were studied t o  avoid erroneous overemphasis n’ ‘c2~ C 
parameters as p 

on t h e  r o l e  of heat  transfer i n  t h e  data of t h e  25% T i  sample. The r e s u l t s  

obtained with these samples confirm our previous conclusion t h a t  heat  

t r a n s f e r  phenomena r a t h e r  than e l e c t r i c a l  e f f e c t s  were of primary impor- 

tance i n  understanding premature take-off s . 
C .  Recovery Power. 

4 I n  a previous quarter ly  progress report ,  we discussed t h e  f a c t  t h a t  

t h e  recovery power data of the Nb-257; T i  sample a t  low f i e l d s  could be 

analyzed t o  deduce the  heat t r a n s f e r  c h a r a c t e r i s t i c s  i n  t h e  f i l m  boi l ing  

region between a s o l i d  surface and l i q u i d  helium. This discussion can now 
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be continued and the  da ta  necessary f o r  t he  ana lys i s  and r e su l t i ng  hea t  

t r a n s f e r  diagrams f o r  a l l  t h ree  compositions w i l l  be shown. 

After a take-off ( o r  an abrupt t r a n s i t i o n  t o  the  normal s t a t e )  has 

been reached, the hea t  t r a n s f e r  cha rac t e r i s t i c s  which apply a r e  those of 

f i l m  bo i l i ng .  On reducing the  power (by  a decrease i n  cu r ren t ) ,  t h e  t r a n -  

s i t i o n  back t o  the f l u x  f low s t a t e  can be determined e i t h e r  by reaching 

t h e  power associated with t h e  minimum hea t  f l u x  i n  film boi l ing ,  $, with 

a corresponding AT = ‘rf o r  by passing through the  f i e l d  dependent c r i t i c a l  

temperature, T ~ ( H )  > ‘cf -- thus undergoing a normal-to-superconducting 

t r a n s i t i o n .  

flow r e s u l t s  i n  a r e tu rn  t o  nucleate boi l ing .  These ideas  w i l l  be made 

The decrease i n  power associated with the  t r a n s i t i o n  t o  f l u x  

c l ea re r  by considering F ig .  6, along with the  recovery point  da ta .  

r e tu rn  point  data f o r  t he  Nb-5$ T i  and t h e  Nb-lG$ T i  samples a r e  shown i n  

F ig .  7 and F i g .  8, respect ively.  The Nb-25$ T i  da ta  was shown i n  Ref. 4, 

The 

p. 28 .  

A t  high f i e l d s  (> H/Hc2 2 0.5 f o r  t h e  5% and 10% samples and > H/Hc2 21 

0.6 f o r  t h e  25% sample),  P 

t r a n s i t i o n  out of t he  normal s t a t e  was due t o  a f i l m  t o  nucleate  bo i l ing  

2 t r a n s i t i o n  a t  $ (= 0.45 k 0.02 W/cm ) which reduced t h e  sample temperature 

below the  c r i t i c a l  temperature f o r  t h a t  f i e l d ;  hence, t he  sample returned 

t o  the  f l u x  flow s t a t e .  

was approximately constant.  I n  t h i s  region, t h e  r 

I n  F ig .  6, an idea l ized  hea t  t r a n s f e r  diagram, 

log  6 vs log T, i s  shown. The above ideas  a r e  based on a f i l m  t o  nucleate  

boi l ing  t r a n s i t i o n  temperature, T~ l a r g e r  than  ‘cc(H1) [= ’Tlc(H1) - T d ,  t h e  

normal t o  superconducting t r a n s i t i o n  temperature assoc ia ted  with high f i e l d s .  

For  s impl ic i ty ,  only one t r a n s i t i o n  temperature i s  indicated.  I n  f i e l d s  

below approximately Hc2/2 f o r  t he  54 and 10% samples and 3Hc2/5 f o r  t h e  
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25% specimen, the  above condition i s  no longer v a l i d  but r a t h e r  one can - 
assume t h a t  t he  superconductirq t r a n s i t i o n  temperature T (H ) I= Tc(H2) - 'TJ c 2  

i s  above t h e  f ilm-to-nucleate boi l ing t r a n s i t i o n  temperature, 

case, when t h e  sainple was i n  the normal state i n  f i lm boi l ing  and t h e  power 

. I n  t h i s  Tf 

t o  t h e  sample was decreased (by  decreasing t h e  cur ren t ) ,  the  sample tempera- 

t u r e  decreased i n  accordance with t h e  4 vs T f o r  t h e  f i l m  boi l ing regime of 

t h e  heat t r a n s f e r  charac te r i s t ic .  If t h e  temperature of t h e  sample should 

be reduced below i t s  c r i t i c a l  temperature, T ( H 2 ) ,  before the  minimum heat  

flux i n  f i l m  boi l ing,  T ~ ,  i s  reached, then t h e  normal-to-superconducting 

f l u x  flow t r a n s i t i o n  would occur f i rs t ;  and, as a consequence of t h e  reduced 

C 

heat production, t h e  f ilm-to-nucleate boi l ing  t r a n s i t i o n  would fol low closely.  

For  t h i s  hypothesis t o  be t rue ,  t h e  power l e v e l  a t  recovery would be l a r g e r  

a t  low f i e l d s  where the  t r a n s i t i o n  temperature i s  a l s o  la rges t .  This i s  

true, as shown i n  Figs .7  and 8 and Fig .  5, Ref. 4. Using the  above ideas ,  

the  s t r a i g h t  l i n e  through t h e  data points  a t  low f i e l d s  was combined w i t h  

t h e  dependence of H 

bo i l ing  region. 

on T t o  yieid an expression f o r  4 = i ' (T)  for e ie  f i h i  c2 

Although we do not have a measurement of t h i s  region f o r  

our mater ia l  and geometry, it i s  nevertheless encouraging t h a t  t h e  derived 

8 fi lm boi l ing  curve l i e s  between the data of Lyon5 and Eastman and Datars. 

From t h e  data i n  Figs.  7 and 8 and s imi la r ly  for the  25% sample, t h e  

power dependence on f i e l d  i s  obtained 

--L--- D i m  i is +L- =--_- - f i n n n m n n n a i m n  i-t- +ha v n v n  ein'lri + - r m n c i t i n n  t n m -  
U L L L  y u * r L A  c " - L L b " y " I L u - c I I ~  " A I L .  f2L .A"  a. LUAU " . L U * A Y L  " L V L *  I_... 

wl'cLc r'l C 

perature.  

ava i lab le  data  f o r  t h e  Nb-5% T i  and t h e  Nb- lO% T i  samples and t h i s  i s  

A quadratic dependence of H on T was found t o  bes t  f i t  t h e  c2 
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b 

shown i n  F igs .  9 and 10, respect ively.  

approximating the data of t he  Nb-254& T i  as shown i n  F ig .  11. 

A 312 power l a w  was necessary f o r  

For  t h e  

5 and lo$ samples then, 

Hc2(T) = Hc2(0) 

Subs t i t u t ing  the  necessary parameters from Table I, Hc2( 0) and Tc and 

T = AT + TB and combining Eqs .  (1) and ( 2 )  enable one t o  ca l cu la t e  4 as a 

func t ion  of AT. 

F ig .  1 2  f o r  both the 546 and 1 6  samples. 

shown f o r  t h e  Nb-25% T i  s t r i p  derived i n  t h e  same manner as t h e  o the r  com- 

pos i t ions ,  except f o r  t h e  subs t i t u t ion  of a 3/2 power f o r  t he  square 

dependence i n  Eq. ( 2 ) .  For  a l l  t h ree  a l loys ,  t he  temperature dependence 

of t h e  hea t  transfer was l i nea r  and of t h e  form 

A p l o t  of log 6 vs log AT with Tb = 4 .2  K i s  shown i n  

I n  F i g .  13, a similar graph i s  

4 = 0.039 AT + constant . ( 3) 

This l i n e a r  temperature dependence f o r  t h e  f i l m  bo i l ing  regime agrees  with 

Dory,7 while Lyon5 and Cummings and Smith both give a The Breen 
a 

h 

and Westwatery cor re la t ion  gives  f o r  tubes with surface a reas  comparable 

t o  our  s t r i p s  4 = 0.09 AT + constant .  Since our method of measurement was 

not s u f f i c i e n t l y  accurate t o  properly d is t inguish  between these  two values 

of t h e  exponent, t he  question of whether our method agrees o r  disagrees  with 

conventional heat t r a n s f e r  measurements remains open. 

Owing t o  the f a c t  t h a t  surface pos i t i on  r e l a t i v e  t o  t h e  bath i s  known 

t o  be i m p ~ r t a n t , ~  it was considered u s e f u l  t o  compare t h e  recovery da ta  of 

a "sideways" posi t ion with t h e  above data taken with t h e  sample i n  a pos i -  

t i o n  having a "top" and "bottom'' t o  determine t h e  e f f e c t  of geometry on 

f i l m  bo i l ing .  Accordingly, t h e  N b - l O %  T i  sample was ro t a t ed  about i t s  long 
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axis so t h a t  t he  f i e l d  was p a r a l l e l  t o  t h e  f aces  but  s t i l l  perpendicular t o  

t h e  current .  

Proceeding i n  a similar manner as discussed above, t h e  power vs AT was ca l -  

culated and i s  shown i n  Fig. 1 5  along with t h e  perpendicular case f o r  com- 

parison. 

i n  t h i s  case a l so ,  b u t t h e  slope i s  changed as w e l l  as t h e  in te rcept .  

form of the  sideways case i s  

The recovery power da ta  f o r  t h i s  geometry i s  shown i n  F ig .  14. 

The hea t  t r a n s f e r  can be f i t  t o  a l i n e a r  temperature dependence 

The 

6 = 0.02 AT + constant . ( 4) 

While t h i s  ana lys i s  and technique may not provide hea t  t r a n s f e r  da ta  as 

accurate  as t h e  conventional heat t r a n s f e r  measurements where t h e  tempera- 

t u r e  i s  measured d i r ec t ly ,  it nevertheless raises the  i n t e r e s t i n g  p o s s i b i l i t y  

of being a use fu l  t o o l  t o  invest igate  unusual o r  d i f f i c u l t  geometries should 

t h e  need arise. 

Comparing t h e  r e s u l t s  of Lyon 5 with t h e  above data  on t h e  minimum hea t  

f l u x  i n  f i l m  boi l ing  leads t o  an i n t e r e s t i n g  speculation. For t h e  "sideways" 

geometry, Lyon found t h e  maximum hea t  f l u x  i n  nucleate bo i l ing  of 0.6 W/cm2 

which i s  the  value of t h e  minimum hea t  flux i n  f i l m  boi l ing  f o r  our Nb-lO$ T i  

sample. For  t h e  "top" and "bottom" geometry, Lyon found f o r  t h e  mean value 

0.5 W/cm , which i s  approximately 0.05 W/cm 

t h r e e  samples. Our r e s u l t s  then a r e  consis tent  with Lyon's f l a t  p l a t e  da ta  

under t h e  condition t h a t  there  i s  e s s e n t i a l l y  no hys te res i s  between the  

nucleate  and f i l m  bo i l ing  regimes. This  conclusion of l i t t l e  hys t e re s i s  

i s  f u r t h e r  supported by recent measurements on s t a i n l e s s  s t e e l  which a l s o  

has poor thermal conductivity and low heat  capacity.4 (See a l so  Sec. I V . )  

2 2 l a r g e r  than our f o r  a l l  



D. V - I Anomaly. 

Another in te res t ing  f e a t u r e  of these samples with s m a l l  heat  capacity 

was an anomalous V - I charac te r i s t ic ,  which appeared j u s t  a f t e r  t h e  onset 

of f l u x  flow at  low power leve ls .  

most of ten  manifests i t s e l f  by a "bump" i n  voltage i s  i l l u s t r a t e d  i n  Fig.  16. 

The power diss ipat ion a t  t h e  onset of the  anomaly ( 2 . 2  A and 1 mV) was 

approximately 4.5 mW/cm . 

A t y p i c a l  example of the  anomaly which 

2 For  other  f i e l d  values where t h i s  c h a r a c t e r i s t i c  

was observed, power d iss ipa t ion  was approximately of t h e  same magnitude. 

Reeber'' has shown t h a t  t h e  change from convective cooling t o  nucleate b o i l -  

2 7 ing a t  a bath temperature of 4 K occurs over t h e  range 1 t o  10 mW/cm ; Dory 

2 gives t h e  values between 1 t o  5 mW/cm . Also, Reeber shows t h a t  t h e r e  i s  

a decided hys te res i s  i n  t h e  superheat ( increasing power has l a r g e r  AT) f o r  

a l l  bath temperatures i n  which the  measurements were performed. We suggest 

t h a t  t h e  voltage anomaly i s  a manifestation of t h e  change from convective 

cooling t o  nucleate boi l ing  -- thus emphasizing the  importance of heat 

t r a n s f e r  even a t  very low power leve ls .  

E .  Take-Off Power. 

Figures 7 and 8 show graphs of take-off power Pt and recovery power P r 

versus applied f i e l d  perpendicular t o  the  sample surface f o r  the  5% T i  and 

10% T i  samples, respectively.  

f e r e n t  f o r  t h e  two compositions, and a comparison with Pt vs H f o r  t h e  

25% T i  mater ia l  from a previous report4 shows t h a t  t h e  curve f o r  t h i s  

mater ia l  i s  d i f fe ren t  from e i t h e r  of these.  

5% T i  and 10% T i  mater ia ls  a r e  shown i n  Figs .  17 and 18. 

for the  25% T i  material was used i n  t h e  previous report'' t o  explain our 

Note t h a t  t h e  take-off curves a r e  qui te  d i f -  

Graphs of Pt vs It f o r  the  

A similar curve 

ideas concerning t h e  cause of take-off and the  re la t ionship  between minimum 



9 . 

1 -  

l -  

propagating current and take-off current .  

t h ree  materials are not similar i n  detai l ,  but  t h e  f ea tu res  of t h e  curve 

f o r  the 25% T i  sample which were important t o  our explanations a r e  present  

a l s o  i n  t h e  curves f o r  t h e  5% T i  and 10% T i  samples. I n  pa r t i cu la r ,  take- 

off does not occur f o r  sample currents less than - ( $ S / R ~ ) ~  where $ i s  t h e  

minimum hea t  flux i n  f i l m  boi l ing determined from recovery data, and the re  

i s  a s ign i f i can t  change i n  character  of t h e  curves at  I such tha t  ItRn/S 

0.8 W/cm . Measurements of t he  minimum propagating current  I 

of f i e l d  f o r  t h e  25% T i  sample were discussed i n  the las t  repor t .  

measurements support t he  idea tha t  t h e  maximum value of I (H)  i s  such t h a t  

2 2 I R / S  = 0.8 W/cm . 
P n  P 

yet been made, but  t h e  P vs  I curves f o r  these samples suggest tha t  t h e  

same w i l l  be t r u e  f o r  them. 

The P vs It curves f o r  t h e  t 

1 

t 
2 as a func t ion  

These 
P 

P 
Measurements of I f o r  the o ther  compositions have not 

t t 

A s  was reported previously f o r  t h e  25% T i  sample, t h e  t r a n s i t i o n  from 

nucleate  t o  film bo i l ing  f o r  the 5% T i  and 10% T i  samples appears t o  occur 

a t  about 0.5 W/cm curve might 

lead one t o  expect. We a re  thus l ed  t o  speculate tha t  the value of heat 

2 2 instead of the 0.8 W/cm which the Pt vs I t 

2 f l u x  0.8 W/cm has a s ignif icance i n  r e l a t i o n  t o  the hea t  t r a n s f e r  curve 

which i s  masked by the occurrence of t h e  heat t r a n s f e r  f l uc tua t ions  dis-  

cussed i n  the  previous repor t .  
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I n  t h e  analysis  of current-voltage c h a r a c t e r i s t i c s  of compound conduc- 

t o r s  i n  t h e  current sharing state ( f l u x  flow state of the  superconductor) 

t h e  knowledge of t h e  value of t h e  s t a b i l i z e r  res is tance,  R ,  i s  necessary i n  

order t o  separate t h e  current i n t o  i t s  superconductor and s t a b i l i z e r  compo- 

nents. 

served i n  short sample experiments). 

i n  t h i s  way a r e  only approximate. 

t o  make a d i r e c t  measurement of R as a funct ion of temperature and ex terna l  

f i e l d .  

I n  our previous work we have found R from the recovery points  (ob- 

I n  many cases, the  r e s u l t s  obtained 

Therefore, we a r e  building an apparatus 

The apparatus can a l s o  be used t o  f i n d  t h e  c r i t i c a l  temperature Tc vs 

magnetic f i e l d  f o r  wire samples. This parameter T i s  employed i n  our 

analysis  of t h e  current sharing s t a t e ,  and it would be desirable  t o  know 

i t s  exact value. 

C 

A p a r t  of the experimental apparatus i s  represented i n  Fig.  19. The 

piece shown i s  enclosed i n  a sealed can, which i s  irmnersed i n  l i q u i d  helium 

and evacuated by an  o i l  d i f fus ion  pump t o  l e s s  than 1 x 10 rmn Hg pressure.  

The only appreciable thermal contact between t h e  copper p a r t s  and t h e  l i q u i d  

helium bath i s  through t h e  two sample current leads.  The sample p o t e n t i a l  

leads, hea ter  current leads,  thermometer current  and p o t e n t i a l  leads,  and 

the  s t a i n l e s s  s t e e l  support tubes a l l  have negl ig ib le  heat  leaks compared 

w i t h  sample current leads.  Therefore, t h e  temperature of t h e  two copper 

heat sinks i s  s e t  by the  balance between h e a t e r  input and heat  leaking down 

the  sample current leads,  For #18 B&S copper leads  54" long, t h e  heat leak 

i s  approximately 350 mW. 

-6 
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The two copper heat sinks, each of which i s  connected t o  one current  

lead, a r e  insulated from the heater block with a O.OOO5" th ick  mylar sheet .  

The mylar i s  covered with s i l icone vacuum grease t o  improve t h e  hea t  contact.  

Two nylon screws hold t h e  three  copper pieces i n  t i g h t  contact. 

The hea ter  i s  mund of 1 2 "  of formvar coated #40 B&S NiCu w i r e  with a 

room temperature res i s tance  of 35.Q. 

with GE 6031 varnish t o  improve thermal contact.  

The sample i s  bent in to  a c i r c l e  1.5" i n  diameter and soldered t o  t h e  

Af te r  winding, the  hea ter  was coated 

heat sinks.  P o t e n t i a l  leads are soldered t o  t h e  sample and brought through 

t h e  vacuum wall, t h e  helium bath,  t o  room temperature, and t o  t h e  poten t i -  

ometer terminals  with no jo in ts .  Since t h e  sample current i s  about 1 amp, 

and t h e  sample res i s tance  only lOpQ, grea t  care must be taken t o  minimize 

any thermal W ' s ,  such as would be present a t  j o i n t s .  

Temperature i s  measured with a Texas Instruments, Inc. low temperature 

germanium thermometer. 

as 20.05% or f O . l  K ,  whichever i s  grea te r .  

measured with a standard four-terminal bridge.  

I t s  ca l ibra t ion  accuracy from 4.2 K t o  20 K i s  given 

The thermometer res i s tance  is 

The vacuum can, containing t h e  experimental apparatus, f i t s  inside a 

2.1" bore, 8" long, 50 kG, 6th  order corrected,  s t a b i l i z e d  NbTi supercon- 

ducting magnet. The f i e l d  homogeneity i s  calculated t o  be 0.01% over a 2" 

diameter sphere. The superconducting c o i l ,  with i t s  small noise leve l ,  i s  

required because of t h e  very small E51F's being measured. 

A preliminary model of t h e  apparatus has been constructed and operated 

fey p c h e r t  tize. ~ p ~ ~ y - p ~ c s ~ e l y ,  e t e r  few ~ j r c l ~ s  the feed-throughs 

t h e  vacuum can (kovar-glass seals)  s t a r t e d  leaking. These a r e  now being r e -  

placed with epoxy seals ,  and the apparatus should be back i n  operation soon. 
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I V .  MEASUREMENTS OF HEAT TRANSFER TO LIQUID HELIUM 

K. R .  Efferson and W. F .  Gauster 

I n  t h e  previous report’’ it was mentioned t h a t  an experimental arrange- 

ment with a t h i n  heat  producing layer  of low thermal conductivity (as i n  t h e  

case of a t h i n  walled s t a i n l e s s  s t e e l  tube which has been used f o r  our exper- 

iments) tends t o  show thermal i n s t a b i l i t i e s .  Another experimental arrange- 

ment (using high thermal conducting mater ia l )  i s  being prepared which i s  

expected t o  dampen these thermal i n s t a b i l i t i e s ;  thus,  it would be possible  

t o  obtain smooth heat  flux-temperature diagrams as needed f o r  our f l u x  flow 

inves t iga t ions  on commercially ava i lab le  compound conductors. 

Our experiments with bare NbTi s t r i p s  indicated t h e  occurrence of 

thermal i n s t a b i l i t i e s  which influence t h e  take-off currents  of these samples. 

These observations show t h e  importance of temperature i n s t a b i l i t i e s  i n  con- 

nection with these invest igat ions.  Therefore, we w i l l  discuss here c e r t a i n  

d e t a i l s  of t h e  temperature i n s t a b i l i t i e s  observed during our heat  t r a n s f e r  

experiments with s t a i n l e s s  s t e e l  tubes which have low thermal conductivity 

and heat capacity similar t o  bare NbTi  s t r i p s .  

Our recent experiments have been described i n  t h e  preceding quar te r ly  

11 repor t ,  page 11. 

tube of 2 .5  mm outside diameter and 0.05 tnm wall thickness  has  been used. 

A current I flowing through t h e  tube produces heat  which i s  d iss ipa ted  t o  

t h e  surrounding l i q u i d  helium and t h e  temperature of t h e  ins ide  surface of 

t h e  tube i s  measured by means of a ca l ibra ted  carbon r e s i s t o r .  The temper- 

a t u r e  a t  t h e  outside tube surface can be calculated from t h e  ins ide  temper- 

a t u r e  and t h e  sample current I. 

A c y l i n d r i c a l  sample i n  the  form of a s t a i n l e s s  s t e e l  

(See Ref. 4, page 15  .) 

Figure 20 shows t h e  voltage drop V across  t h e  carbon r e s i s t o r  as ordin- 

a t e  and the  sample current I as abscissa .  The temperature T i  of t h e  i n s i d e  



surface of t h e  tube i s  r e l a t e d  t o  t h e  voltage drop V across  t h e  carbon 

r e s i s t o r .  V and T .  sca les  are shown. The hea t  5 diss ipa ted  per  un i t  area 

i s  proport ional  t o  t h e  square of I and a W/cm 

Fig.  20. 

ing t h e  measurements, t h e  l iqu id  helium l e v e l  (which was at t h e  beginning 

of t he  experiment 30 cm above the sample) dropped by about 7 cm. 

an average l i q u i d  helium column of 26.5 cm can be assumed. 

1 
2 sca le  i s  shown on top  of 

The l i q u i d  helium temperature was kept a t  4.0 K by pumping. Dur- 

Therefore, 

This experiment was repeated with t h e  same temperature of 4.0 K, how- 

ever,  with an average l i q u i d  helium column of only 4 cm ( see  Fig.  21 ) .  

temperature f luc tua t ions  are grea t ly  reduced. This obvious influence of 

t h e  height  of t h e  l i q u i d  helium column on t h e  temperature f luc tua t ion  has 

been ve r i f i ed  by repeated runs with d i f f e r e n t  l i q u i d  helium columns. 

The 

Temperature f luc tua t ions  i n  pumped l i q u i d  helium (without a heated 

sample) have been observed.I2 We used carbon r e s i s t o r s  arranged about 2 .5  

cm below t h e  sample i n  order t o  monitor t h e  temperature of t h e  l i q u i d  helium. 

With zero sample power, f luc tua t ions  of t he  ba th  temperature were observed. 

The amplitude of these  temperature f luc tua t ions  seemed t o  depend on t h e  

height  of t h e  l i q u i d  helium column i n  a similar manner as t h e  sample temper- 

a t u r e  f luc tua t ions  ( i . e . ,  t h e  amplitudes increased with the  height ,  see F igs .  

22a and 22b). It must be considered t h a t  t h e  amplitudes of t h e  bath temper- 

a t u r e  f luc tua t ions  are seve ra l  orders of magnitude smaller than those of t h e  

sample. 

Additional experiments w i l l  be made t o  inves t iga te  t h e  performance with 

-7 va,,,,,, - 0 r r : n r  <c5:rc;c:u ------ of p.;r;~ing and t o  f i n <  the  ixf'heiice of stii-ieiiig t h e  i ic l ; l i id  

helium bath.  
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V. THIN FILM DEVELOPMENTAL WORK 

J . E. Simpkins 

The vacuum deposit ion and t h e  sput te r ing  techniques which we a r e  using 

f o r  t h e  production of t h i n  f i lms  has been described i n  t h e  previous repor t s ,  

and severa l  po ten t i a l  appl ica t ions  of these t h i n  f i lms  f o r  our research work 

i n  superconductivity have been mentioned. Recently, we employed t h e  f i l m  

technique for building a spec ia l  probe f o r  our heat t r a n s f e r  inves t iga t ions  

(see Section IV). 

The purpose of t h i s  probe i s  t o  generate e l e c t r i c  power up t o  a f e w  

2 W/cm 

A convenient res is tance mater ia l  seems t o  be a metal f i l m  about 1,000 A 

a t  a cy l ind r i ca l  surface of about 3 tnm diameter and about 10 cm length.  
0 

t h i ck .  Our f i r s t  attempt was t o  produce a copper film by vacuum deposi t ion.  

This technique has the  advantage t h a t  t he  copper f i l m  does not oxidize due 

t o  t h e  moisture re ta ined  i n  t h e  g l a s s  tubing s ince t h e  g l a s s  surface i s  not 

heated during film deposit ion.  Another advantage i s  t h a t  t h e  deposit ion 

r a t e  and fi lm thickness may be control led very c lose ly .  

The completed assembly of the  probe i s  shown i n  F ig .  2 3 .  The 1/8" 

diameter pyrex tubing i s  sealed on one end. Thick copper contact areas 

are deposited on t h e  g l a s s  tubing on both ends f o r  solder ing current  and 

voltage leads.  A copper "Housekeeper Seal" i s  at tached t o  one end of t h e  

tubing, together  with a copper plug and two copper tubes.  

tubes,  containing t h e  lead  wires, i s  sealed with epoxy, while t h e  o ther  i s  

One of these  

used t o  evacuate t h e  pyrex tubing. 

form t h e  f i n a l  vacuum sea l .  

Af t e r  evacuation it i s  pinched off t o  

The e n t i r e  assembly i s  approximately 4" i n  

length.  

50 ohm carbon r e s i s to r ,  which i s  used t o  measure temperature on t h e  in s ide  

Before t h e  copper plug i s  soldered i n t o  pos i t ion ,  a 1/10 w a t t  



surface of t h e  g l a s s  tubing, i s  placed inside t h e  tube toge ther  w i t h  i t s  

current  and voltage leads.  

su l a t ing  varnish.  

ab le  evacuation of t h e  lower region of t h e  tube. 

Good thermal contact i s  made with GE 7031 in-  

Pump-out holes a r e  provided around the r e s i s t o r  t o  en- 

A s  mentioned previously, t h i s  probe will be used f o r  our heat t r a n s f e r  

It might be of i n t e re s t  t o  operate t h i s  tube with o ther  f i l m s .  experiments. 

It should be possible  t o  remove the copper f i l m  without damaging the probe 

and t o  vacuum deposi t  a copper f i lm  of d i f f e ren t  thickness  or  t o  apply a 

f i l m  of another material. 
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TABLE CAPTION 

Measured and Calculated Parameters for N b T i  Alloys.  Table I. 



FIGURF: CAPTIONS 

F ig .  1 Flux f low voltage vs  current a t  Tb = 4.2 K as a func t ion  of t r ans -  

verse  f i e l d  f o r  a Nb-5% T i  s t r i p .  

F ig .  2 Flux flow voltage vs current a t  Tb = 4.2 K as a func t ion  of trans- 

verse f i e l d  f o r  a Nb-lO$ T i  s t r i p .  

Fig.  3 Normalized f l u x  flow r e s i s t i v i t y  vs normalized t ransverse f i e l d  

at  Tb = 4.2 K f o r  a Nb-5$ T i  s t r i p .  

F ig .  4 Normalized f l u x  flow r e s i s t i v i t y  vs  normalized t ransverse f i e l d  

a t  Tb = 4.2 K f o r  a Nb-10% T i  s t r i p .  

F ig .  5 Comparison of t he  c r i t i c a l  current densi ty  vs normalized t ransverse 

f i e l d  a t  Tb = 4.2 K.  

F ig .  6 An ideal ized heat  t r ans fe r  diagram log 6 vs log T ( T = T - TB) . 
The maximum nucleate boi l ing  hea t  f l u x  i s  

hea t  f l u x  i n  film boi l ing.  

and % i s  t h e  minimum 

Tc(H1) = Tc(H1) - TB i s  t h e  t r a n s i t i o n  

temperature minus bath temperature associated w i t h  a high f i e i d  

while T ~ ( H ~ )  i s  s imilar ly  associated with a low f i e l d .  

Take-off power, Pt = V I ,and recovery power, P = V I 

verse f i e l d  a t  Tb = 4.2 K f o r  a Nb-5% T i  s t r i p .  

F ig .  7 vs t r ans -  t t  r r r’ 

Fig .  8 Take-off power, Pt = V t I t ,  and recovery power, Pr = V I 

verse f i e l d  a t  Tb = 4.2 K f o r  a Nb-1% T i  s t r i p .  

vs t r ans -  r r’ 

F ig .  9 Upper c r i t i c a l  f i e l d  vs normalized temperature f o r  Nb-5% T i .  

F ig .  10 Upper c r i t i c a l  f i e l d  vs normalized temperature f o r  a Nb-lO$ T i  

s t r i p .  

Upper c r i t i c a l  f i e l d  vs normalized temperature f o r  a Nb-25$ T i  

s t r i p .  

F ig .  11 



Fig .  1 2  

F ig .  13 

Fig .  14 

Fig.  1 5  

Fig.  16 

Fig.  17 

Fig .  18 

Fig.  19 

Fig .  20 

Log of power vs log of temperature difference between surface and 

helium bath f o r  t he  film bo i l ing  regime. 

form ;I = 0.039 AT + constant.  

Both curves are of t h e  

Log of power vs log of temperature difference between surface and 

helium bath f o r  t h e  f i l m  bo i l ing  regime. 

6 = 0.039 AT + constant.  

The curve i s  of t h e  form 

Recovery power, P 

dependence of P 

= V r I r ,  vs p a r a l l e l  magnetic f i e l d .  The f i e l d  r 

i s  shown f o r  Tb = 4.2 K.  r 

Log of power vs log of temperature difference between surface and 

helium bath f o r  t he  f i l m  bo i l ing  regime at Tb = 4.2 K. The sample 

with f i e l d  perpendicular has a ''top'' and "bottom" surface and with 

the f i e l d  p a r a l l e l  it has two  "sideways" surfaces.  

Voltage vs current  a t  low power l e v e l s  

and hys te res i s  at  Tb = 4.2 K .  

Take-off power, Pt = V I 

and above I t 

vs take-off 

= 5.85 A d i s s ipa t ion  i n  a 
t t' 

and g rea t e r  than 8, respect ively.  

Take-off power, P = V I vs take-off t t t' 

i l l u s t r a t i n g  t h e  anomaly 

current .  Below 

normal zone was 

current .  Below 

It = 4.4 A 

less than  

It = 6.7 A 

and above It = 8.7 A d i s s ipa t ion  i n  a normal zone was less than 

c& and g rea t e r  than a, respec t ive ly .  

Experimental apparatus f o r  the  measurement of r e s i s t ance  as a 

function of temperature. 

Heat flux-temperature diagram obtained w i t h  an average l i q u i d  

helium column of 26.5 cm. 



Fig.  2 1  Heat flux-temperature diagram obtained with an average l i q u i d  

helium column of 4 cm. 

Fig.  22 Temperature f luc tua t ions  i n  l i q u i d  helium pumped t o  4.0 K.  

(a)  

(b) 

Average l i q u i d  helium column 29 cm; 

Average l i q u i d  helium column 6.5 cm. 

F ig .  23  Thin f i lm  probe f o r  heat transfer measurements. 
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TABU I 

Measured and Calculated Parameters -- for NbTi Alloys  - 

Nb-5$ Ti Nb-lO$I Ti Nb-25$1 Ti 

K 

9 . m  

19.5 

8 .4  

15.5 

8.0 

7.0 

7.35 

48.9 

9 . w  

38.5 

13.5 

36.5 

10.0 

1 2  .o 

25.7 

50.4 

10.5(b) 

100.0 

31.2 

73.0 

10.0 

28.0 

38.3 

152.0 

(a) 

(b) 

( c )  

W. A .  F ie tz  and W. W. Webb, Phys. Rev. - 161, 423 (1967). 

D. M. Kroeger, Ph.D. Thesis, Vanderbilt Univ. , 1966 (unpublished). 

All other  values were measured o r  calculated i n  the present work. 
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Fig ,  3 Normalized flu flow resistivity vs normalized transverse field 

at Tb = 4.2 K f o r  a Nb-576 Ti strip. 
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Fig. 4 Normalized flux f l o w  resistivity vs normalized transverse field 

at Tb = 4.2 K f o r  a Nb-l@ Ti strip. 
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Fig .  5 Comparison of the c r i t i c a l  current  densi ty  vs normalized t ransverse 

f i e l d  a t  Tb = 4.2 K. 
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Fig .  6 An idealized hea t  t r a n s f e r  diagram log  ;1 vs log T ( T = T - TB) . 
The maximum nucleate boi l ing  heat  flux is 

heat flux i n  f i l m  boi l ing.  

temperature minus bath temperature assoc ia ted  with a high f i e l d  

while Tc(H ) i s  s imi la r ly  associated with a low f i e l d .  

and $ is  t h e  minimum 

T ~ ( H ~ )  = Tc(H1) - TB i s  t h e  t r a n s i t i o n  

2 

ORNL DWG. 67-13294 
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Fig .  8 Take-off power, P = V I and recovery power, Pr = V I vs t r a n s -  t t t’ r r’ 
verse  f i e l d  a t  Tb = 4.2 K f o r  a Nb-l@ T i  s t r i p .  
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Fig.  1 2  Log of power vs log of temperature d i f fe rence  between surface and 

helium bath f o r  t h e  film boi l ing  regime. Both curves are of t h e  

form 6 = 0.039 L1T + constant.  
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Fig.  1 3  Log of power vs log of temperature difference between surface and 

helium bath f o r  the f i lm  boi l ing  regime. 

6 = 0.039 AT + constant. 

The curve i s  of the form 
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with f i e l d  perpendicular has a "top" and "bottom" surface and with 
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Fig.  16 Voltage vs current  a t  low power l e v e l s  i l l u s t r a t i n g  t h e  anomaly 

and hysteresis  a t  T = 4.2  K. b 
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Fig.  19 Experimental apparatus f o r  t h e  measurement of r e s i s t ance  as a 

func t ion  of temperature. 
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Fig .  20 Heat flux-temperature diagram obtained with an  average l i q u i d  

helium column of 26.5 cm. 
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Fig.  2 1  Heat flux-temperature diagram obtained with an average l i q u i d  

helium column of 4 cm. 
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Fig .  22 Tempera-ure f luc,uat ,ms i n  l i q u i d  helium pumped t o  4.0 K. 

(a) 

( b )  

Average l i q u i d  helium column 29 cm; 

Average l i q u i d  helium column 6.5 cm. 
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Fig. 23  Thin f i l m  probe f o r  hea t  t r a n s f e r  measurements. 
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