1,162 research outputs found

    Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    Get PDF
    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as \u27immune privileged\u27, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another important aspect of implementing gene therapy in the clinical arena is to be able to image the targeting of the therapeutics to the tumors, treatment effectiveness and progression of disease. We have therefore reviewed the most exciting non-invasive, in vivo imaging techniques which can be used in combination with gene therapy to monitor therapeutic efficacy over time

    Novel Gene Therapeutic Approaches to Brain Cancer

    Get PDF
    In the United States, approximately 17,000 people per year are diagnosed with brain tumors, the leading cause of death from cancers in children ages 1-15 year (1,2). Gliomas are the most prevalent type of brain tumors in adults, affecting 3.2/100,000 persons/yr in the United States (www.CBTRUS.org). In spite of advances in surgery, chemotherapy, and radiotherapy, the mean survival time of patients post-diagnosis remains approximately 9-12 months

    Plasmacytoid Dendritic Cells in the Tumor Microenvironment: Immune Targets for Glioma Therapeutics

    Get PDF
    AbstractAdenovirus-mediated delivery of the immune-stimulatory cytokine Flt3L and the conditionally cytotoxic thymidine kinase (TK) induces tumor regression and long-term survival in preclinical glioma (glioblastoma multiforme [GBM]) models. Flt3L induces expansion and recruitment of plasmacytoid dendritic cells (pDCs) into the brain. Although pDCs can present antigen and produce powerful inflammatory cytokines, that is, interferon α (IFN-α), their role in tumor immunology remains debated. Thus, we studied the role of pDCs and IFN-α in Ad.TK/GCV+ Ad.Flt3L-mediated anti-GBM therapeutic efficacy. Our data indicate that the combined gene therapy induced recruitment of plasmacytoid DCs (pDCs) into the tumor mass; which were capable of in vivo phagocytosis, IFN-α release, and T-cell priming. Thus, we next used either pDCs or an Ad vector encoding IFN-α delivered within the tumor microenvironment. When rats were treated with Ad.TK/GCV in combination with pDCs or Ad-IFN-α, they exhibited 35% and 50% survival, respectively. However, whereas intracranial administration of Ad.TK/GCV + Ad.Flt3L exhibited a high safety profile, Ad-IFN-α led to severe local inflammation, with neurologic and systemic adverse effects. To elucidate whether the efficacy of the immunotherapy was dependent on IFN-α-secreting pDCs, we administered an Ad vector encoding B18R, an IFN-α antagonist, which abrogated the antitumoral effect of Ad.TK/GCV + Ad.Flt3L. Our data suggest that IFN-α release by activated pDCs plays a critical role in the antitumor effect mediated by Ad.TK/GCV + Ad.Flt3L. In summary, taken together, our results demonstrate that pDCs mediate anti-GBM therapeutic efficacy through the production of IFN-α, thus manipulation of pDCs constitutes an attractive new therapeutic target for the treatment of GBM

    Safety Profile of Gutless Adenovirus Vectors Delivered into the Normal Brain Parenchyma: Implications for a Glioma Phase 1 Clinical Trial

    Get PDF
    Abstract Adenoviral vectors (Ads) have been evaluated in clinical trials for glioma. However, systemic immunity against the vectors can hamper therapeutic efficacy. We demonstrated that combined immunostimulation and cytotoxic gene therapy provides long-term survival in preclinical glioma models. Because helper-dependent high-capacity Ads (HC-Ads) elicit sustained transgene expression, in the presence of antiadenoviral immunity, we engineered HC-Ads encoding conditional cytotoxic herpes simplex type 1 thymidine kinase and immunostimulatory cytokine Fms-like tyrosine kinase ligand-3 under the control of the TetOn system. Escalating doses of combined HC-Ads (1?108, 1?109, and 1?1010 viral particles [VP]) were delivered into the rat brain. We assessed neuropathology, biodistribution, transgene expression, systemic toxicity, and behavioral impact at acute and chronic time points after vector delivery. Histopathological analysis did not reveal any evidence of toxicity or long-term inflammation at the lower doses tested. Vector genomes were restricted to the injection site. Serum chemistry did not uncover adverse systemic side effects at any of the doses tested. Taken together, our data indicate that doses of up to 1?109 VP of each HC-Ad can be safely administered into the normal brain. This comprehensive toxicity and biodistribution study will lay the foundations for implementation of a phase 1 clinical trial for GBM using HC-Ads.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98452/1/hgtb%2E2012%2E060.pd

    Immune-mediated loss of transgene expression from virally transduced brain cells is irreversible, mediated by IFNγ, perforin, and TNFα, and due to the elimination of transduced cells

    Get PDF
    The adaptive immune response to viral vectors reduces vector-mediated transgene expression from the brain. It is unknown, however, whether this loss is caused by functional downregulation of transgene expression or death of transduced cells. Herein, we demonstrate that during the elimination of transgene expression, the brain becomes infiltrated with CD4 and CD8 T cells and that these T cells are necessary for transgene elimination. Further, the loss of transgene-expressing brain cells fails to occur in the absence of IFNγ, perforin, and TNFα receptor. Two methods to induce severe immune suppression in immunized animals also fail to restitute transgene expression, demonstrating the irreversibility of this process. The need for cytotoxic molecules and the irreversibility of the reduction in transgene expression suggested to us that elimination of transduced cells is responsible for the loss of transgene expression. A new experimental paradigm that discriminates between downregulation of transgene expression and the elimination of transduced cells demonstrates that transduced cells are lost from the brain upon the induction of a specific antiviral immune response. We conclude that the anti-adenoviral immune response reduces transgene expression in the brain through loss of transduced cellsFil: Zirger, Jeffrey M.. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Puntel, Mariana. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bergeron, Josee. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Wibowo, Mia. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Moridzadeh, Rameen. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Bondale, Niyati. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Barcia, Carlos. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados UnidosFil: Kroeger, Kurt M.. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Liu, Chunyan. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados UnidosFil: Castro, Maria Graciela. University of California at Los Angeles. School of Medicine; Estados Unidos. Cedars Sinai Medical Center; Estados Unidos. University of Michigan; Estados UnidosFil: Lowenstein, Pedro R.. Cedars Sinai Medical Center; Estados Unidos. University of California at Los Angeles. School of Medicine; Estados Unidos. University of Michigan; Estados Unido

    In vivo mature immunological synapses forming SMACs mediate clearance of virally infected astrocytes from the brain

    Get PDF
    The microanatomy of immune clearance of infected brain cells remains poorly understood. Immunological synapses are essential anatomical structures that channel information exchanges between T cell–antigen-presenting cells (APC) during the priming and effector phases of T cells' function, and during natural killer–target cell interactions. The hallmark of immunological synapses established by T cells is the formation of the supramolecular activation clusters (SMACs), in which adhesion molecules such as leukocyte function-associated antigen 1 segregate to the peripheral domain of the immunological synapse (p-SMAC), which surrounds the T cell receptor–rich or central SMAC (c-SMAC). The inability so far to detect SMAC formation in vivo has cast doubts on its functional relevance. Herein, we demonstrate that the in vivo formation of SMAC at immunological synapses between effector CD8+ T cells and target cells precedes and mediates clearance of virally infected brain astrocytes

    Release of HMGB1 in Response to Pro-Apoptotic Glioma Killing Strategies: Efficacy and Neurotoxicity

    Get PDF
    Purpose In preparation for a Phase I clinical trial utilizing a combined cytotoxic/immunotherapeutic strategy using adenoviruses expressing Flt3L (Ad-Flt3L) and thymidine kinase (Ad-TK) to treat glioblastoma (GBM), we tested the hypothesis that Ad-TK+GCV would be the optimal tumor killing agent in relation to efficacy and safety when compared to other pro-apoptotic approaches. Experimental Design and Results The efficacy and neurotoxicity of Ad-TK+GCV was compared with Ads encoding the pro-apoptotic cytokines (TNF-α, TRAIL, FasL), alone or in combination with Ad-Flt3L. In rats bearing small GBMs (day 4), only Ad-TK+GCV or Ad-FasL improved survival. In rats bearing large GBMs (day 9), the combination of Ad-Flt3L with Ad-FasL did not improve survival over FasL alone, while Ad-Flt3L combined with Ad-TK+GCV led to 70% long-term survival. Expression of FasL and TRAIL caused severe neuropathology, which was not encountered when we utilized Ad-TK+/−Ad-Flt3L. In vitro, all treatments elicited release HMGB1 from dying tumor cells. In vivo, the highest levels of circulating HMGB1 were observed after treatment with Ad-TK+GCV+Ad-Flt3L; HMGB1 was necessary for the therapeutic efficacy of AdTK+GCV+Ad-Flt3L, since its blockade with glycyrrhizin completely blocked tumor regression. We also demonstrated the killing efficacy of Ad-TK+GCV in human GBM cell lines and GBM primary cultures; which also elicited release of HMGB1. Conclusions Our results indicate that Ad-TK+GCV+Ad-Flt3L exhibits the highest efficacy and safety profile amongst the several pro-apoptotic approaches tested. The results reported further support the implementation of this combined approach in a Phase I clinical trial for GBM

    Study of the Efficacy, Biodistribution, and Safety Profile of Therapeutic Gutless Adenovirus Vectors as a Prelude to a Phase I Clinical Trial for Glioblastoma

    Get PDF
    Glioblastoma multiforme (GBM) is the most common and most aggressive primary brain tumor in humans. Systemic immunity against gene therapy vectors has been shown to hamper therapeutic efficacy; however, helper-dependent high-capacity adenovirus (HC-Ad) vectors elicit sustained transgene expression, even in the presence of systemic anti-adenoviral immunity. We engineered HC-Ads encoding the conditional cytotoxic herpes simplex type 1 thymidine kinase (TK) and the immunostimulatory cytokine fms-like tyrosine kinase ligand 3 (Flt3L). Flt3L expression is under the control of the regulatable Tet-ON system. In anticipation of a phase I clinical trial for GBM, we assessed the therapeutic efficacy, biodistribution, and clinical and neurotoxicity with escalating doses of HC-Ad-TetOn-Flt3L + HC-Ad-TK in rats. Intratumoral administration of these therapeutic HC-Ads in rats bearing large intracranial GBMs led to long-term survival in ~70% of the animals and development of antiglioma immunological memory without signs of neuropathology or systemic toxicity. Systemic anti-adenoviral immunity did not affect therapeutic efficacy. These data support the idea that it would be useful to develop HC-Ad vectors further as a therapeutic gene-delivery platform to implement GBM phase I clinical trials

    Identification and Visualization of CD8+ T Cell Mediated IFN-γ Signaling in Target Cells during an Antiviral Immune Response in the Brain

    Get PDF
    CD8+ T cells infiltrate the brain during an anti-viral immune response. Within the brain CD8+ T cells recognize cells expressing target antigens, become activated, and secrete IFNγ. However, there are no methods to recognize individual cells that respond to IFNγ. Using a model that studies the effects of the systemic anti-adenoviral immune response upon brain cells infected with an adenoviral vector in mice, we describe a method that identifies individual cells that respond to IFNγ. To identify individual mouse brain cells that respond to IFNγ we constructed a series of adenoviral vectors that contain a transcriptional response element that is selectively activated by IFNγ signaling, the gamma-activated site (GAS) promoter element; the GAS element drives expression of a transgene, Cre recombinase (Ad-GAS-Cre). Upon binding of IFNγ to its receptor, the intracellular signaling cascade activates the GAS promoter, which drives expression of the transgene Cre recombinase. We demonstrate that upon activation of a systemic immune response against adenovirus, CD8+ T cells infiltrate the brain, interact with target cells, and cause an increase in the number of cells expressing Cre recombinase. This method can be used to identify, study, and eventually determine the long term fate of infected brain cells that are specifically targeted by IFNγ. The significance of this method is that it will allow to characterize the networks in the brain that respond to the specific secretion of IFNγ by anti-viral CD8+ T cells that infiltrate the brain. This will allow novel insights into the cellular and molecular responses underlying brain immune responses
    • …
    corecore