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Abstract 

Purpose 

In preparation for a Phase I clinical trial utilizing a combined cytotoxic/immunotherapeutic strategy 

using adenoviruses expressing Flt3L (Ad-Flt3L) and thymidine kinase (Ad-TK) to treat glioblastoma 

(GBM), we tested the hypothesis that Ad-TK+GCV would be the optimal tumor killing agent in 

relation to efficacy and safety when compared to other pro-apoptotic approaches. 

Experimental Design and Results 

The efficacy and neurotoxicity of Ad-TK+GCV was compared with Ads encoding the pro-apoptotic 

cytokines (TNF-α, TRAIL, FasL), alone or in combination with Ad-Flt3L. In rats bearing small GBMs 

(day 4), only Ad-TK+GCV or Ad-FasL improved survival. In rats bearing large GBMs (day 9), the 

combination of Ad-Flt3L with Ad-FasL did not improve survival over FasL alone, while Ad-Flt3L 

combined with Ad-TK+GCV led to 70% long-term survival. Expression of FasL and TRAIL caused 

severe neuropathology, which was not encountered when we utilized Ad-TK+/−Ad-Flt3L. In vitro, all 

treatments elicited release HMGB1 from dying tumor cells. In vivo, the highest levels of circulating 

HMGB1 were observed after treatment with Ad-TK+GCV+Ad-Flt3L; HMGB1 was necessary for the 

therapeutic efficacy of AdTK+GCV+Ad-Flt3L, since its blockade with glycyrrhizin completely blocked 

tumor regression. We also demonstrated the killing efficacy of Ad-TK+GCV in human GBM cell lines 

and GBM primary cultures; which also elicited release of HMGB1. 

Conclusions 

Our results indicate that Ad-TK+GCV+Ad-Flt3L exhibits the highest efficacy and safety profile 

amongst the several pro-apoptotic approaches tested. The results reported further support the 

implementation of this combined approach in a Phase I clinical trial for GBM. 
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INTRODUCTION 

Glioblastoma multiforme (GBM) is an invasive brain tumor derived from glial cells. Every year in the 

United States, 18,000 people are diagnosed with GBM, constituting the most common malignant 

primary brain tumor. The standard of care for treatment of GBM consists of surgical resection, 

followed by radiation therapy and chemotherapy with temozolomide. Temozolomide extends the 

median survival by 2 to 12 months, with 8% to 40% of the patients surviving for up to 2 years 

depending on the trial and the molecular makeup of GBM (1). Due to the diffuse nature of GBM, 

tumor resection is unlikely to be complete and recurrence occurs usually within 2 to 3 cm of the 

resection margins (2). Thus, more effective strategies are urgently needed for patients with GBM. 

Novel therapies aimed at targeting immune cells to eliminate neoplastic cells within the brain 

parenchyma far from the main tumor mass, including various vaccination approaches (3, 4), could 

have a high impact in the treatment of this devastating cancer. 

Previous results from our laboratory have shown that an immunotherapy approach using adenoviral 

vectors (Ad) encoding the cytokine Flt3L and herpes simplex virus type 1-thymidine kinase (TK) 

induces tumor regression, long-term survival, and immunologic memory in rats and mice bearing 

large intracranial syngeneic glioblastomas or metastatic melanoma (GBM; refs. 5–9). Intracranial 

administration of Ad-Flt3L recruits dendritic cells into the brain parenchyma (10), improving brain 

tumor antigen presentation; Ad-TK exerts a cytotoxic effect exclusively in proliferating GBM cells in 

the presence of ganciclovir (GCV), leading to the release of tumor antigens and proinflammatory 

molecules from dying tumor cells (7). 

Before clinical translation of the conditional cytotoxic/immunotherapeutic approach that combines 

Ad-Flt3L with Ad-TK+GCV in a phase I clinical trial for GBM, we wished to test the hypothesis that 

delivery of the conditionally cytotoxic gene, TK, is the optimal tumor-killing agent to be used in 

combination with Ad-Flt3L. Thus, we compared the efficacy and neurotoxicity of Ad-TK with Ad 

vectors encoding the proapoptotic cytokines tumor necrosis factor-α (TNF-α), TNF-related apoptosis-

inducing factor (TRAIL), or Fas ligand (FasL). Because expression of death receptors and their ligands 

has been described in human glioblastoma, targeting of these receptors has been proposed as 

potential approaches for GBM treatment. Importantly, proapoptotic cytokines released from 

infected cells could also elicit strong bystander effects. 

TNF-α receptor 1 (TNFR1) expression has been detected in human GBM cells; hence, delivery of TNF-

α has been attempted in preclinical GBM models and phase I clinical trials for GBM using 

recombinant proteins or gene therapy vectors (11–14). TRAIL was selected in view that this cytokine 

exhibits a strong cytotoxic effect on GBM cells in vitro and in vivo that can be enhanced with 

chemotherapeutic agents and radiotherapy (15–17). Expression of TRAIL receptors has been 

detected consistently in human GBM (18) and their expression is enhanced by radiation and 

chemotherapy (15–17, 19). Thus, delivery of TRAIL in combination with irradiation or temozolomide 

has been attempted in preclinical models for GBM (17, 20–23). 
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It has also been reported that Fas is expressed in ∼90% of human GBM (24), constituting a valuable 

target for therapy development. FasL showed a very strong proapoptotic effect in several human 

and rodent GBM cells (25). Moreover, we and others found that intratumoral delivery of an 

adenovirus expressing FasL improved the survival of rats bearing intracranial GBM (26, 27), 

constituting a promising therapeutic candidate. 

In the present work, we found that in rats bearing small tumors (day 4), only Ad-TK+GCV and Ad-FasL 

improved survival. Thus, we selected them to be used in combination with immune-stimulatory Ad-

Flt3L for the treatment of large tumors (day 9), in which all single therapies fail (5). We found that 

although Ad-Flt3L only marginally improved the survival of Ad-FasL–treated rats, it significantly 

increased survival when combined with Ad-TK+GCV, leading to more than 70% of long-term 

survivors. Administration of Ad-TK+GCV alone or combined with Ad-Flt3L did not significantly alter 

the structure of the normal brain, whereas expression of FasL or TRAIL had severe neuropathologic 

consequences. These results suggest that Ad-TK+GCV+Ad-Flt3L is the most effective among the 

several therapeutic approaches tested and also exhibits the best safety profile. 

We recently showed that therapeutic efficacy of Ad-TK+GCV+Ad-Flt3L is dependent on the release of 

the nuclear protein high mobility group box 1 (HMGB1) from dying tumor cells (7). HMGB1 is a 

ubiquitous chromatin-binding protein present in the nucleus of virtually all eukaryotic cells (28). 

When HMGB1 is secreted by inflammatory cells or released from dying cells into the extracellular 

milieu, it acts as an endogenous TLR agonist (7, 28, 29). We showed that treatment of mice bearing 

syngeneic intracranial brain tumors with Ad-TK+GCV+Ad-Flt3L induces the release of HMGB1 from 

dying tumor cells, which in turn activates TLR2 signaling in bone marrow–derived tumor-infiltrating 

dendritic cells, initiating a specific antitumor immune response (7). Other cytotoxic agents that kill 

proliferating cells and are routinely used in the treatment of GBM patients, such as radiotherapy and 

temozolomide, also led to HMGB1 release from GBM cells (7). 

In the present work, we wished to test the hypothesis that HMGB1 would be released upon tumor 

cell death induced not only by cytotoxic agents that inhibit replication but also by proapoptotic 

cytokines that kill cells by activation of membrane death receptors. In addition, we determined that 

HMGB1 release is involved in the efficacy of the immunotherapeutic approach in a rat syngeneic 

model of GBM. All proapoptotic Ads induced the release of HMGB1 from CNS-1 tumor cells in vitro 

and in vivo and the therapeutic efficacy of Ad-TK+GCV+Ad-Flt3L was indeed dependent on release of 

HMGB1 because its blockade with glycyrrhizin completely abolished the efficacy of the treatment. 

Further, HMGB1 was also released from human GBM cell lines and primary GBM cell cultures 

obtained from surgical biopsies, in response to tumor cell killing elicited by treatment with Ad-

TK+GCV. Collectively, our data strongly support the implementation of the combined TK/Flt3L gene 

therapy in a phase I trial for human GBM. 

 

MATERIALS AND METHODS 

Adenoviral vectors 

Ad vectors used are based on adenovirus type 5 (Ad5), with deletion in the E1 and E3 regions; the 

expression cassette containing the appropriate transgene is inserted within the E1 region (30). Six 
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different vectors were used: Ad-TRAIL [expresses human TRAIL under the control of the CAG 

promoter, which combines the human cytomegalovirus (CMV) immediate-early enhancer and a 

modified chicken β-actin promoter; ref. 31], Ad-TNF-α (expresses human TNF-α under the control of 

the human CMV promoter, hCMV; ref. 32), Ad-FasL (expresses murine FasL under the control of the 

hCMV promoter; refs. 25, 32), Ad-TK (expresses HSV1-thymidine kinase under the control of the 

hCMV promoter; ref. 5), Ad-Flt3L (expresses human soluble fms-like tyrosine kinase ligand under the 

control of the hCMV promoter; refs. 5, 7, 10, 33), and, as a control, we used an Ad without transgene 

(Ad0). The Ads were grown and purified as previously described (30). All viral preparations were free 

from replication-competent adenovirus and lipopolysaccharide contamination (30). 

Ads were administered within the intracranial tumors or in naïve striatum as described below using 

the following doses: Ad-TNF-α, Ad-FasL, Ad-TRAIL, and Ad-TK: 5 × 107 plaque-forming units (pfu)/3 

μL; Ad-Flt3L: 108 pfu/3 μL; Ad0: 5 × 107 pfu/3 μL (to mimic dose of single proapoptotic Ad 

treatment) or 1.5 × 108 pfu/3 μL (to deliver equivalent total pfu in all experimental treatment 

groups). 

Brain tumor rodent models 

Intracranial CNS-1 syngeneic model. Rat GBM CNS-1 cells (4,500; 3 μL) were implanted intracranially 

in the right striatum of syngeneic Lewis rats (220–250 g, Harlan) as previously described (34). Rats 

were treated 4 d (small tumor) or 9 d (large tumor) after tumor implantation. 

Recurrent intracranial CNS-1 syngeneic model. Rat GBM CNS-1 cells (4,500; 3 μL) were implanted 

intracranially in the left striatum of Ad-TK+GCV+Ad-Flt3L–treated rats that survived the primary 

brain tumor (implanted on the right striatum) for over 90 d. Rechallenged rats were not treated 

further. Naïve rats were used as controls for CNS-1 cell tumor growth in this experimental paradigm. 

CNS-1 cells were grown in DMEM (CellGro), supplemented with 10% FCS, 1% L-glutamine, 1% Pen-

Strep, 1% nonessential amino acids, and passaged routinely. The day of surgery, cells were 

trypsinized, resuspended in DMEM without supplements, and kept on ice for up to 2 h. 

Rats were housed in a pathogen-free environment, humidity- and temperature-controlled vivarium 

on a 12:12 hour light/dark cycle (lights on 07:00) with free access to food and water. All animal 

experiments were done after prior approval by the Institutional Animal Care and Use Committee at 

Cedars Sinai Medical Center and conformed to the policies and procedures of the Comparative 

Medicine Department. After anesthesia, animals were placed in a stereotactic apparatus and 

injected unilaterally into the right striatum. Rats were injected using a 10-μL Hamilton syringe 

(coordinates: 1 mm forward from bregma, 3.1 mm lateral and 5 mm ventral from the dura). Animals 

were allowed to recover and their health status was closely monitored. Treatment was done at the 

times indicated in each figure, using the same drill hole to inject saline or Ad in a volume of 3 μL 

(delivered in three locations ventral of the dura: 5.5, 5.0, and 4.5 mm) into the tumor mass. Twenty-

four hours after delivery of viral vectors, animals that received Ad-TK began treatment with GCV (7 

mg/100 μL i.p.), twice daily for 7 d. To block HMGB1, groups of rats received 100 mg glycyrrhizin (7, 

35) i.p. twice a day for 10 to 15 d, starting on the day of the injection of saline or Ad-TK+Ad-Flt3L or 

the day of GBM rechallenge. Glycyrrhizin (Calbiochem) was diluted to a concentration of 100 mg/mL 

in 50 mmol/L NaOH at 37°C and pH was adjusted to pH 7.4 using 1 mol/L Tris-HCl. The solution was 

then filtered through a 0.22-μm syringe pump filter and 1 mL was administered per rat per dose. 
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Animals were monitored daily and euthanized at the first signs of moribund behavior or at 

predetermined time points for DNA purification, serum HMGB1 ELISA, or immunostaining. Animals 

were euthanized according to the guidelines of the Institutional Animal Care and Use Committee at 

Cedars-Sinai Medical Center, by terminal perfusion with Tyrodes solution (132 mmol/L NaCl, 1.8 

mmol/L CaCl2, 0.32 mmol/L NaH2PO4, 5.56 mmol/L glucose, 11.6 mmol/L NaHCO3, and 2.68 

mmol/L KCl) followed by perfusion with 4% paraformaldehyde (PFA) under deep anesthesia. Brains 

were removed and further fixed in 4% PFA for 4 to 5 d. 

Immunofluorescence 

Transgene expression of the proapoptotic Ads was evaluated in CNS-1 cells in vitro fixed with 4% PFA 

(20 min at 4°C) 24 h after infection with 100 pfu/cell (50,000 cells in 24-well plates). 

Immunofluorescence was done as described in Supplementary Data. 

Expression of therapeutic targets was done in vitro in PFA-fixed CNS-1 cells and in vivo in PFA-fixed 

free-floating 60-μm coronal sections from rat brain 9 d after tumor implantation. 

Immunofluorescence was done as described elsewhere (6, 9, 32) using specific antibodies indicated 

in Supplementary Data. 

Nuclei were stained with 4′,6-diamidino-2-phenylindole (5 μg/mL, Invitrogen Molecular Probes); cells 

and tissues were mounted with ProLong Antifade (Invitrogen Molecular Probes). Confocal 

micrographs were obtained using a Leica confocal microscope TCS SP2 with AOBS equipped with 

405-nm violet-diode UV laser, 488-nm argon laser, and 594- and 633-nm helium-neon lasers; and 

using a HCX PL APO 63× 1.4 numerical aperture oil objective (Leica Microsystems Heidelberg). 

Neuropathologic analysis 

Neuropathologic analysis was done in naïve rat brain 7 and 60 d after injecting proapoptotic Ads 

alone or in combination with Ad-Flt3L. Following perfusion with Tyrode's solution and 4% PFA, brains 

were fixed in 4% paraformaldehyde for 3 additional days. Sixty-micrometer serial coronal sections 

were cut through the striatum and free-floating immunocytochemistry was done as previously 

described (9, 34). Nissl staining was used to determine the histopathologic features of the brains. For 

a brief description of these methods and the antibodies used, see Supplementary Data. Tissues were 

photographed with Carl Zeiss Optical Axioplan microscope using Axiovision Rel 4.6 and MOSAIX 

software (Carl Zeiss). 

ELISA assays 

HMGB1 release was determined in rat serum and cell culture supernatant using a specific anti-

HMGB1 ELISA (IBL International) following the manufacturer's protocol (1). Release of TNF-α and 

TRAIL was evaluated in cell culture supernatant of CNS-1 cells infected with the corresponding 

proapoptotic Ads (200 pfu/cell for 48 h) by ELISA following the manufacturer's protocol (eBioscience 

88-7346-22 and R&D Systems DTRL00, respectively). Wells were read on a 96-well plate reader 

(Spectramax Plus, Molecular Devices) at 450 nm and at 570 nm to subtract background absorbance. 

Flow cytometry 
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CNS-1 cells were seeded (25,000 per well) and infected, 24 h later, with the proapoptotic Ads (100 

pfu/cell). After 24 h, GCV (25 μmol/L) was added to Ad-TK–infected cells. Seventy-two hours after 

infection or addition of GCV, cell death was determined by propidium iodide (PI)-Annexin V staining 

(see Supplementary Data). Human GBM cell lines (U251 and U87) and human GBM short-term cell 

cultures (IN2045 and IN859) were seeded (25,000 in 24-well plates) and infected 24 h with Ad-TK or 

Ad0 (200 pfu/cell). GCV was added to Ad-TK–infected cells 24 h later. Cell death was determined 72 

h after addition of GCV. 

To detect FasL release from CNS-1 cells, we collected conditioned medium from Ad-FasL–infected 

(100 pfu/cell) CNS-1 cells and used it to incubate LN18 cells (50,000 per well in 24-well plates), which 

are highly sensitive to FasL-induced cytotoxicity (26). Twenty-four hours later, cell death was 

detected by Annexin-PI staining. 

DNA ladder 

The cytotoxic effect of the proapoptotic Ads was analyzed in vitro and in vivo by the pattern of DNA 

fragmentation. DNA was obtained from CNS-1 cells (106 cells in T25 flask) infected with the 

proapoptotic Ads (100 pfu/cell for 72 h) and from CNS-1 intracranial tumors dissected from the rat 

brain 5 d after injection of 5 × 107 pfu of each Ad. DNA fragmentation was done as described in 

Supplementary Data. 

Statistical analysis 

Sample sizes were calculated to detect differences between groups with a power of 80% at a 0.05 

significance level using PASS 2008 (Power and sample size software, NCSS). Kaplan-Meier survival 

curves were analyzed using the Mantel log-rank test (GraphPad Prism version 3.00, GraphPad 

Software). Levels of HMGB1 and cell death percentages were analyzed by one-way ANOVA followed 

by Tukey's test (NCSS). When data failed normality or Levene's test for variance homogeneity 

(NCSS), they were log-transformed before analysis. Pearson's test was used to determine correlation 

coefficient (R2) between HMGB1 release and percentage of cell death (GraphPad Prism). 

Randomization test was used to analyze body weight curves (NCSS). P values of <0.05 were used to 

determine the null hypothesis to be invalid. The statistical tests used are indicated in the figure 

legends. 

 

RESULTS 

In vitro characterization of proapoptotic Ads and their targets in rat glioblastoma cells. In 

anticipation of phase I clinical trials in patients with GBM, we aimed to test the hypothesis that Ad-

TK, which kills dividing cells in the presence of ganciclovir (GCV) in combination with the 

immunostimulatory Ad-Flt3L, is both the safest and most effective tumor cell–killing approach when 

compared with Ads expressing proapoptotic TNF-α (Ad-TNF-α), FasL (Ad-FasL), and TRAIL (Ad-TRAIL). 

We used immunocytochemistry to determine the presence of the target receptor for each 

proapoptotic cytokine in CNS-1 cells in culture (Supplementary Fig. S1A). CNS-1 tumor cells in culture 

expressed all necessary death receptors (i.e., TNFR1, TRAILR2, Fas). Proliferating CNS-1 cells, the 

target cells for the cytotoxic effects of Ad-TK+GCV, were abundant in culture as determined by 

staining of the nuclear protein Ki67, a cellular marker of proliferation (Supplementary Fig. S1A). 
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Transgene expression of the therapeutic Ads was confirmed by immunocytochemistry using specific 

antibodies against the transgenes (Supplementary Fig. S1B). Release of the proapoptotic cytokines 

TNF-α and TRAIL was detected by ELISA in cell culture supernatants (Supplementary Fig. S1C). The 

levels of TNF-α and TRAIL in the cell supernatants were ∼0.3 and 1.5 ng/mL, respectively. Release of 

FasL was evaluated by a biological assay using conditioned medium from Ad-FasL–infected CNS-1 

cells to induce cell death in LN18 cells, which are sensitive to FasL-induced cytotoxicity (26). Ad-FasL 

conditioned medium had strong cytotoxic effects, reducing LN18 cell viability to <10% in 24 hours 

(Supplementary Fig. S1C). 

We then tested the proapoptotic effects of Ads in vitro using cultures of rat CNS-1 GBM cells (Fig. 1A 

). We infected the cells with the proapoptotic Ads, and 24 hours later the cells infected with Ad-TK 

received GCV (25 μmol/L). Seventy-two hours after infection, cells were collected and stained with 

Annexin-PI. Flow cytometric analysis revealed that Ad-TRAIL induced apoptosis in nearly 100% of the 

cells, Ad-TK+GCV and Ad-FasL in >80%, and Ad-TNF-α in ∼40% of the cells (Fig. 1A). Electrophoretic 

analysis of DNA purified from these cells confirmed that cells underwent cell death by apoptosis 

(Supplementary Fig. S2A). 

Release of HMGB1 from dying GBM cells in vitro upon infection with proapoptotic Ads. We recently 

determined that mouse GBM cells release HMGB1 upon cell death induced by a variety of genotoxic 

agents, including Ad-TK, radiotherapy, and temozolomide. HMGB1 is an abundant chromatin protein 

that acts as an endogenous TLR2 agonist when released by either dying cells and inflammatory cells 

(7, 28, 29). In these experiments, we aimed to test the hypothesis that HMGB1 would be released 

upon tumor cell death induced not only by cytotoxic agents that inhibit replication but also following 

tumor cell death induced by proapopototic cytokines that kill cells by activation of membrane death 

receptors. We found that infection of CNS-1 cells with proapoptotic Ads led to release of HMGB1, as 

detected by ELISA in the cell culture supernatant (Fig. 1B). Pearson correlation analysis was used to 

determine the correlation coefficient (R2) between the concentration of HMGB1 in the cell 

supernatants and the percentage of cell death in vitro in CNS-1 cells infected with the proapoptotic 

Ads. The levels of HMGB1 (Fig. 1B) exhibited strong correlation (R2 = 0.96, P < 0.05; Fig. 1B, inset) 

with the levels of cell death (Fig. 1A). Our results indicate that HMGB1 release following tumor cell 

death is a widespread phenomenon that is independent of the tumor cell–killing mechanism. 

In vivo efficacy of proapoptotic Ads in a rat orthotopic syngeneic glioblastoma model: release of 

HMGB1 from dying tumor cells into the general circulation, tumor regression, and long-term 

survival. We tested the efficacy of the proapoptotic Ads in a syngeneic intracranial GBM rat model. 

We implanted CNS-1 GBM cells in the striatum of syngeneic Lewis rats and treated them 4 days later 

(small tumor, volume: 1.6 ± 0.2 mm3) by intratumoral administration of the proapoptotic Ads. Rats 

that received Ad-TK were injected with GCV i.p. for 7 days (7 mg/twice a day). Tumor regression and 

long-term survival was achieved only after the administration of Ad-TK (6 of 7 rats) and Ad-FasL (3 of 

9 rats), whereas Ad-TRAIL (0 of 8 rats) or Ad-TNF-α (0 of 5 rats) did not improve the survival of rats 

when compared with saline-treated animals (Fig. 1C). However, all the Ads induced apoptosis in vivo, 

as determined by analysis of DNA purified from the intracranial tumor 5 days after treatment. 

Agarose gel electrophoresis showed the typical laddering of apoptotic DNA fragmentation in the 

tumors treated with all proapoptotic Ads tested (Supplementary Fig. S2B). 
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We then tested the hypothesis that the Ads expressing proapoptotic cytokines would induce HMGB1 

release from rat GBM in vivo. Circulating levels of HMGB1 were determined by ELISA in the serum of 

tumor-bearing rats 5 days after treatment with Ads (Fig. 1D). We found increased HMGB1 levels in 

the serum of tumor-bearing rats after administration of the proapoptotic Ads but not with an empty 

Ad (Ad0) or saline (Fig. 1D), which indicates that HMGB1 release from dying tumor cells occurs in 

vivo upon tumor cell killing induced by a wide spectrum of proapoptotic agents and that this 

phenomenon can be monitored in the peripheral circulation in vivo. 

Distribution of therapeutic targets of proapoptotic molecules within intracranial CNS-1 tumors and 

peritumoral brain tissue. Because in GBM patients Ads may be injected directly into the margins of 

the tumor after surgical resection (36) or Ad-expressed transgenes can diffuse from the tumor, it is 

critical to evaluate whether the cytotoxic effect is limited to tumor cells and will not affect normal 

peritumoral tissues. We performed the qualitative evaluation for the distribution of the targets of 

the therapeutic genes to allow the assessment of potential effectiveness and side effects. We 

evaluated the expression of the receptors for the proapoptotic gene therapy approaches, in the 

tumor and surrounding normal brain, 9 days after GBM cell implantation. To this end, we used 

immunofluorescence techniques using antibodies specific for death receptors TNFR1, TRAILR2, and 

Fas, and also determined the distribution of proliferating cells, the target cells for TK+GCV (stained 

with an anti-Ki67 antibody). We stained tumor cells using anti-vimentin antibodies, and neurons and 

astrocytes were identified with anti-NeuN and anti-glial fibrillary acidic protein-(GFAP) antibodies, 

respectively (Fig. 2 and Supplementary Figs. S3 and S4). Tissues were analyzed by confocal 

microscopy, which revealed that all receptors were expressed in the tumor. TNFR1, Fas, and Ki67 

were expressed throughout the tumor mass, whereas TRAILR2 was more concentrated surrounding 

areas of necrosis. Ki67 was more abundant than the expression of the death receptors within the 

tumor mass. Nuclear protein Ki67 was rarely detected in the brain tissue adjacent to the tumor 

mass; expression was only detected within a small number of peritumor reactive GFAP-positive 

astrocytes. Expression of TNFR1 was also confined to GFAP-positive cells in the brain adjacent to the 

tumor. Expression of TRAIL was readily detected in neurons surrounding the tumor mass, and Fas 

was profusely expressed in structures resembling neuronal axons. 

For a therapy to be implemented in human clinical trials, it is not only important to determine its 

efficacy but it is also critical to assess its safety. Considering that Ads can express very powerful 

proapoptotic molecules and that the targets for some of them, such as TRAILR2 and Fas, were 

detected in neuronal cell bodies and axons surrounding the tumors (Fig. 2), we tested the 

neurotoxicity profile of the proapoptotic Ads in the normal brain parenchyma 7 days (Fig. 3A ) and 

60 days (Supplementary Fig. S5) post vector delivery into the striatum; rats that were injected with 

Ad-TK also received GCV for 7 days. The brain structure was evaluated by Nissl staining and 

immunocytochemistry of tyrosine hydroxylase (TH, as an index of striatal tissue integrity) and myelin 

basic protein (MBP, as an index of oligodendrocyte integrity), whereas infiltration of inflammatory 

cells was studied by immunostaining of MHCII, CD68 (macrophages), and CD8 (cytotoxic T cells). 

Injection of Ad-TNF-α and Ad-TK+GCV did not affect the normal structure of the brain or the 

expression of TH and MBP and only induced a mild infiltration of inflammatory cells. However, Ad-

FasL and Ad-TRAIL exerted severe neuropathology (i.e., hemorrhages and loss of brain tissue). 

Reduction of TH expression and demyelinization were detected in large areas of the striatum 

surrounding the site of injection of Ad-FasL and Ad-TRAIL. Concomitantly, profuse infiltration of 

macrophages, MHCII-positive cells, and T cells were found in the brains of these rats. Sixty days later, 
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reduction of TH expression was still evident in Ad-FasL– and Ad-TRAIL–injected animals, as well as 

large unilateral and sometimes bilateral ventriculomegaly (Supplementary Fig. S5), a result of 

significant brain tissue loss. 

Putative systemic toxicity was assessed by weighing these rats daily after intracranial injection of the 

proapoptotic Ads. We detected a rapid drop of 15% to 25% in the weight of rats injected in the 

striatum with Ad-FasL (Fig. 3B). The reduction in body weight was sustained for 9 to 10 days, after 

which rats started slowly gaining weight, without, however, reaching the weight of control rats 

throughout the 4-week duration of the study. In rats injected in the brain with Ad-TRAIL, their 

weight remained stable ∼300 g until day 10; at this time point, their weight dropped ∼15% to 25%, 

and remained low for 3 days, after which they started to gain weight and recovered. On the other 

hand, the body weight of rats that were injected in the brain with Ad-TNF-α or Ad-TK showed a 

similar pattern to the rats injected with saline and Ad0, maintaining their weight at ∼300 g for 10 

days; from that time point onward, the rats started gaining weight at a rate of ∼2.5 g/d. 

Efficacy of proapoptotic viruses in combination with Ad-Flt3L in large CNS-1 tumors; release of 

HMGB1. Considering that the proapoptotic Ads with the highest efficacy in vivo in small tumors were 

Ad-TK+GCV and Ad-FasL (Fig. 1C), we selected these Ads to use in combination with the 

immunostimulant Ad-Flt3L for the treatment of rats bearing large tumors (9 days postimplantation, 

volume: 35 ± 5.5 mm3). We implanted CNS-1 GBM cells in the striatum of syngeneic Lewis rats and 

treated them 9 days later with either Ad-TK or Ad-FasL alone or in combination with Ad-Flt3L (Fig. 4A 

). These tumors are ostensibly larger at the time of treatment than those treated 4 days after the 

implantation (Fig. 4A). In this model, Ad-TK+GCV and Ad-FasL alone failed to induce tumor 

regression and long-term survival. Although Ad-TK+GCV exerted a slight increase in median survival 

(MSR, 1.17), all of the rats succumbed due to tumor growth. When Ad-Flt3L was combined with Ad-

FasL, the survival did not improve compared with the saline-treated rats, and only 1 of 10 rats had 

long-term survival. However, when Ad-Flt3L was used together with Ad-TK+GCV, the treatment led 

to long-term survival of 7 of 10 rats (Fig. 4A). Supplementary Table S1 shows the median survival or 

percentage of long-term survival upon treatment with all the therapeutic approaches described. 

Note that the combination of Ad-TK+GCV+Ad-Flt3L led to ∼70% survival, and thus the median 

survival was not reached. 

Circulating serum levels of HMGB1 were determined by ELISA in tumor-bearing rats 5 days after the 

treatment with Ad-TK+GCV or Ad-FasL alone or in combination with Ad-Flt3L; as controls, rats were 

injected with saline or Ad0 (Fig. 4B). Whereas control rats exhibited basal levels of HMGB1, we 

detected HMGB1 in the serum of most rats treated with Ad-TK+GCV or Ad-FasL alone or in 

combination with Ad-Flt3L. However, Ad-TK+GCV+Ad-Flt3L led to the highest levels of serum HMGB1 

(Fig. 4B). 

Efficacy of combined conditional cyotoxicity and immunotherapy depends on circulating HMGB1. To 

assess the hypothesis that the endogenous TLR ligand HMGB1 released from dying tumor cells is 

necessary for efficacy of the immunotherapy in the CNS-1 GBM rat model, we blocked its activity 

using glycyrrhizin, which binds to both of the box domains on HMGB1 and prevents subsequent 

HMGB1 signaling (7, 35). Tumor-bearing rats received intratumoral injection of saline or Ad-TK+Ad-

Flt3L, followed by the administration of GCV and glycyrrhizin, starting on the day of the vector 

administration (Fig. 4C). Rats treated with Ad-TK+GCV+Ad-Flt3L (four of six) survived long term, 
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whereas simultaneous administration of glycyrrhizin completely blocked the therapeutic effect of 

the immunotherapy and all the rats succumbed due to tumor burden (Fig. 4C). Taken together, these 

results suggest that the efficacy of the combined treatment is strongly dependent on the release of 

HMGB1 from dying tumor cells. Further, HMGB1 could be used as a biomarker to assess therapeutic 

efficacy in vivo. 

Role of HMGB1 in the induction of anti-GBM immunologic memory induced by the combined Ad-

TK+GCV+Ad-Flt3L treatment. Treatment with Ad-TK+GCV+Ad-Flt3L induces brain tumor regression 

and immunologic memory in both murine and rat syngeneic GBM models (7, 8). Now we aimed to 

uncover the role of HMGB1 in the rejection of a second brain tumor in a model of recurrent GBM. 

Ad-TK+GCV+Ad-Flt3L–treated rats that survived a primary CNS-1 tumor were rechallenged with a 

second CNS-1 tumor in the contralateral striatum 90 days after primary tumor implantation (Fig. 4D). 

To block HMGB1, rats received glycyrrhizin for 15 days, starting the day of the second tumor 

implantation. Naïve rats were used as controls of tumor growth. We found that 50% of Ad-

TK+GCV+Ad-Flt3L–treated long-term survivors that were implanted in the contralateral hemisphere 

survived the rechallenge without further treatment. Blocking HMGB1 by administration of 

glycyrrhizin did not block anti-GBM immunologic memory induced by the combined treatment (Fig. 

4D), thus suggesting that HMGB1 is not essential for memory T-cell elimination of CNS-1 cells. 

Acute and chronic neurotoxicity of the combined therapy in the normal brain. We next assessed 

whether Ad-TK+GCV or Ad-FasL combined with Ad-Fl3L are neurotoxic when injected into the 

normal brain parenchyma. We injected the Ads in the striatum of naïve Lewis rats and performed 

neuropathologic analysis 7 days (Fig. 5 ) and 60 days later (Supplementary Fig. S6). As controls, we 

administered saline or Ad0. We found that Ad-TK+GCV+Ad-Flt3L did not affect the brain structure or 

the expression of TH and MBP and induced a mild infiltration of inflammatory cells similar to that 

observed using Ad0. However, Ad-FasL+Ad-Flt3L injection led to severe neuropathology, with 

hemorrhages and large areas of tissue loss (Fig. 5). Reduction of TH expression and patches of 

demyelinization were seen in the striatum surrounding the injection site of Ad-FasL+Ad-Flt3L, as well 

as large infiltration of macrophages, MHCII-positive cells, and CD8+ cells. Sixty days later, 

inflammation declined, but ventriculomegaly secondary to brain tissue loss was evident in Ad-

FasL+Ad-Flt3L–injected rats (Supplementary Fig. S6). 

Induction of cell death and HMGB1 release in vitro from human GBM cell lines and primary GBM cell 

cultures. Human GBM cell lines (U251 and U87) and short-term cultures of human GBM (IN859 and 

IN2045) were infected with Ad0 or Ad-TK followed by addition of GCV. HMGB1 release was 

evaluated in the cell culture supernatants 72 hours after addition of GCV and cell death was 

determined by Annexin-PI staining and flow cytometry (Fig. 6 ). We found that human GBM cells 

were very sensitive to Ad-TK+GCV–induced cell death, exhibiting 60% to 80% cell death (Fig. 6). 

Accordingly, HMGB1 release was greatly increased when cells were treated with Ad-TK+GCV. These 

results support the notion that HMGB1 is released upon killing of human GBM cells, suggesting that 

this is a universal mechanism independent of the tumor cell origin. 

 

DISCUSSION 

 



Candolfi M (2010) 
PMID: 19570774 

11 
 

In anticipation of a phase I clinical trial in GBM patients using an immunotherapeutic approach that 

combines Ad-Flt3L with Ad-TK+GCV, it was critical to determine the optimal cytotoxic agent to use in 

this approach. Therefore, we compared the efficacy and neurotoxicity of Ad-TK+GCV with Ad vectors 

encoding the proapoptotic cytokines TNF-α, TRAIL, and FasL. Our hypothesis was that Ad-TK+GCV 

would exhibit superior efficacy and safety when compared with Ads expressing proapoptotic 

cytokines. Because Ad-TK kills proliferating cells in the presence of GCV (37), we expected this agent 

to have a powerful antitumor effect due to the presence of mitotic tumor cells within GBM. Also, the 

bystander effect of phosphorylated GCV would amplify the cytotoxic effect of this approach (37). 

The highest therapeutic efficacy was indeed achieved when using Ad-TK+GCV by itself for small 

tumors, and in combination with Ad-Flt3L for large tumors. Although all the proapoptotic Ads 

certainly induced apoptosis in vitro and in vivo in tumor cells, delivery of proapoptotic cytokines was 

insufficient to induce therapeutically effective tumor regression in vivo. This could be related to the 

relative low levels of death receptor expression. In fact, weak expression of TRAILR2 in GBM cells has 

been suggested to limit the therapeutic efficacy of TRAIL delivery in GBM patients (38). Preclinical 

research showed that radiation and chemotherapeutic agents increase TRAILR expression and GBM 

sensitivity to TRAIL-induced apoptosis (15, 17, 39), although the therapeutic implications of this 

increase remain to be determined. 

Another possible cause for the lack of efficacy of proapoptotic cytokines could be related to their 

effect on the immune cells that infiltrate the tumors. The Fas/FasL system has been implicated in the 

immune privilege of GBM (40). FasL expression has been detected in GBM patients' tumor cells as 

well as in endothelial cells of the tumor blood vessel, which has been postulated as a mechanism of 

depletion of Fas+ T cells in these tumors (41). In fact, expression of FasL in human GBM was found to 

negatively correlate with the degree of intratumoral CD4+ and CD8+ T-cell infiltration (41). Also, 

expression of Fas was found to positively correlate with the malignancy grade of astrocytomas in 

brain tumor patients (24). 

Soluble receptors have also been involved in the mechanism by which GBM cells down-regulate the 

effects of proapoptotic cytokines (42). Expression of soluble receptors for FasL by tumor cells has 

been suggested to mediate GBM escape from FasL-induced apoptosis (42). Expression of soluble 

TNFR1 has also been detected in GBM specimens from patients. These receptors were found to 

reduce the function of TNF-α in GBM cells (43) and may be playing a role in the lack of efficacy of Ad-

TNF-α observed in our study. Also, delivery of proapoptotic cytokines that only target tumor cells 

expressing a specific death receptor may lead to the selection of nonexpressing cells that are 

resistant to the targeted therapy. 

Because proliferating cells are encountered within the tumor in all the stages and tumor cell 

replication is a requirement for tumor progression, targeting these cells with intratumoral delivery of 

TK is a very attractive candidate to induce apoptosis in GBM (36). Importantly, synergy between 

TK+GCV and temozolamide, an alkylating agent routinely used in the treatment of GBM patients (1), 

has been reported in preclinical mouse models of GBM (44). Because phosphorylated GCV was 

found to inhibit DNA polymerase δ, an enzyme involved in repair of DNA cross-links, this synergy has 

been explained by the TK+GCV–mediated inhibition of the repair of temozolomide-induced cross-

links in tumor cell DNA (44). 
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Considering that in some clinical trials Ads are injected in the tumor cavity margins following surgical 

resection (36), it is critical to use proapoptotic agents whose cytotoxic effect is restricted to tumor 

cells. To determine the specificity of each cytotoxic agent, we studied the presence of their 

therapeutic targets (i.e., TNFR1, TRAILR2, Fas); to detect proliferating cells, we immunolabeled for 

nuclear protein Ki67 in rat intracranial CNS-1 GBM and in nonneoplastic brain surrounding the 

tumor. A small number of astrocytes expressing TNFR1 or Ki67 were detected in the nonneoplastic 

brain surrounding the tumor. However, we found that TRAILR2 and Fas are expressed in neuronal 

cell bodies and fibers in the normal brain adjacent to CNS-1 tumors. Expression of these death 

receptors has also been detected in the normal human brain. Fas has been detected in neurons in 

the cerebral cortex of normal human brains, as well as in neurophil and white matter fibers (45), 

whereas TRAILR2 is expressed in neurons and oligodendrocytes, as well as in endothelial cells in the 

meninges and capillaries of the normal human brain (46, 47). In fact, TRAIL-induced apoptosis was 

reported in human normal brain cells, including neurons and glial cells, in temporal lobe sections ex 

vivo (48), and FasL has been postulated to be involved in neuronal damage following brain injury 

(49). Considering the bystander effect exerted by the release of the proapoptotic cytokines from 

tumor cells and the expression of TRAILR2 and Fas in normal brain cells surrounding the tumor, 

administration of Ads encoding FasL or TRAIL into the normal brain bears a high risk of neurotoxicity. 

Tallying with the presence of death receptors in neuronal cell bodies and fibers, delivery of FasL and 

TRAIL caused severe neuropathologic side effects. Importantly, we also detected systemic toxicity as 

assessed by a reduction in the body weight (50-75 g) of Ad-TRAIL– and Ad-FasL–injected rats. On the 

other hand, administration of Ad-TK+GCV alone or combined with Ad-Flt3L did not significantly alter 

the structure of the normal brain and induced only a mild, transient local inflammation. Intracranial 

delivery of TK using Ads has been tested in several clinical trials in GBM patients with a very good 

safety profile (36). Importantly, an extra safety feature of this approach is that the withdrawal of the 

GCV can limit any potential therapy-associated toxic events (50). Also, we have assessed the toxicity 

of vectors by performing dose-response curves with Ads expressing several transgenes (51–54). The 

summary of the data (55) indicates that vector toxicity is dependent on vector dose, but requires the 

structural integrity of vector capsids (independently of transgenes expressed); thus, doses of vector 

need to be kept below 1 × 109 pfu to avoid serious, deleterious, long-term brain toxicity. Concerning 

transgene expression, we have determined that even low doses of vectors can provide expression 

detectable by immunocytochemistry (53). However, to elicit therapeutic efficacy, doses of at least 5 

× 107 pfu need to be delivered into brain tumors. This explains the doses used in this article (i.e., the 

safest and most effective doses). In preparation for the clinical trial (i.e., for the submission of the 

investigational new drug application (IND) to the Food and Drug Administration), the clinical-grade 

vectors will be tested for toxicity and efficacy using at least three doses of each vector. Clinical dose 

in human brain tumor patients is otherwise limited by the MTD for adenoviral vectors in the human 

brain, which has been determined to be 1 × 1012 vp (56). Thus, all doses to be used in humans will 

be kept below the adenoviral vector MTD. 

We have recently reported that mouse GBM cells release HMGB1 upon cell death induced by 

cytotoxic agents that inhibit DNA replication and thus kill proliferating cells, such as temozolomide, 

irradiation, and Ad-TK+GCV (7). In the present work, we tested the hypothesis that HMGB1 would 

not only be released upon tumor cell death induced by cytotoxic agents that inhibit replication but 

also due to tumor cell death induced by proapoptotic cytokines that kill cells by activation of 

membrane death receptors. Here, we show that HMGB1 is also released from rat GBM cells when 
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they are killed by proapoptotic cytokines upon death receptor activation. Importantly, our data 

indicate that circulating levels of HMGB1 could have potential application as biomarker of 

therapeutic efficacy in vivo. The fact that human GBM cells also responded to the cell-killing effect of 

Ad-TK+GCV by releasing HMGB1 supports the notion that this molecule could be used as a 

pharmacodynamic predictor of tumor regression in GBM patients. 

We previously showed in a mouse GBM model that HMGB1 released from dying tumor cells 

activates TLR2 signaling in bone marrow–derived dendritic cells that infiltrate the tumor in response 

to the immunotherapy with Ad-TK+GCV+Ad-Flt3L (7). In this article, we show that circulating levels 

of HMGB1 increase in parallel with the efficacy of the treatment in the rat GBM model. We found 

that of all the treatments tested, the highest circulating levels of HMGB1 are reached when tumor-

bearing rats are treated with Ad-TK+GCV+Ad-Flt3L. These levels were indeed higher than those 

observed in the rats treated with Ad-TK+GCV alone. This could be due to the release of HMGB1 by 

immune cells (28) recruited by Ad-Flt3L (6, 7, 10) or by the induction of additional tumor cell death 

by cytotoxic T cells, macrophages, or NK cells, which infiltrate the tumor and we have shown to be 

crucial for the therapeutic efficacy of this immunotherapy (5, 7). Release of HMGB1 from dying 

tumor cells has been postulated to direct the immunologic response to dying cells, which determines 

the clinical outcome of anticancer therapies (7, 57, 58). In fact, we show here that HMGB1 release 

from dying tumor cells is crucial for the efficacy of Ad-TK+GCV+Ad-Flt3L in GBM-bearing rats and its 

blockade completely abolishes the efficacy of the therapy. These results are in accordance with 

those obtained in the mouse GBM model (7). The data reported strongly support the use of 

cytotoxic therapies to enhance the efficacy of immunotherapeutic approaches in GBM patients (59). 

Considering that the majority of GBM patients succumb due to recurrence of tumors that have 

become completely resistant to any form of chemotherapy and radiation therapy (36), it is crucial to 

develop immunotherapeutic approaches that induce immunologic memory against the tumor. 

Tallying with our previous results (7, 8), ∼50% of Ad-TK+GCV+Ad-Flt3L–treated long-term survivors 

survived the rechallenge without further treatment. HMGB1 did not seem to play a critical role in 

the induction of anti-GBM immunologic memory induced by the combined therapy. 

Translation of a novel therapeutic approach into clinical trial requires assessing therapeutic efficacy 

in other tumor models. We recently showed that this approach is also effective in eradicating B16-

F10 melanomas implanted in the brain of syngeneic mice (7). These results are very encouraging 

because metastatic brain tumors are very frequent and its incidence is predicted to increase with the 

increasing survival of patients with extracranial cancers that metastasize to the central nervous 

system (60). 

In summary, our study provides the first systematic, comparative assessment of the neurotoxicity 

and efficacy of several proapoptotic molecules, some of which have already progressed to phase I 

clinical trials for GBM. Further, we show that HSV1-TK in combination with GCV exerted the most 

potent antitumor activity and also displayed the most satisfactory safety profile when used as single 

therapy. Our data also show that the combination of Ad-TK+GCV and Ad-Flt3L exerts a strong 

antitumoral effect in several intracranial rodent models of GBM and has the safest neurotoxic profile 

of all the approaches tested. Thus, Ad-TK+GCV+Ad-Flt3L displays the highest therapeutic efficacy of 

all the therapies tested thus far in preclinical experimental GBM models. Further, the efficacy of the 

combined treatment is mediated by the release of the endogenous ligand HMGB1, which we have 
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previously shown signals via TLR2 receptors on tumor-infiltrating dendritic cells (7). These results 

strongly support the translation of this immunotherapy in a phase I clinical trial for GBM. 
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FIGURE LEGENDS 

Fig. 1. Efficacy of adenoviral vectors expressing proapoptotic transgenes in vitro and in vivo. A, CNS-1 

cells were infected with Ads expressing proapoptotic transgenes; that is, HSV1-thymidine kinase (Ad-

TK), TNF-α (Ad-TNF-α), FasL (Ad-FasL), or TRAIL (Ad-TRAIL). Twenty-four hours after infection, cells 

infected with Ad-TK were incubated with GCV. Untreated cells and cells infected with an Ad 

containing no transgene (Ad0) were used as controls. Cell death was determined 72 h after infection 

or addition of GCV by flow cytometric analysis of Annexin V-PI–stained cells. B, release of HMGB1 

was assessed in the cell culture supernatant by ELISA. *, P < 0.05 versus mock (one-way ANOVA 

followed by Tukey's test). Inset, Pearson correlation analysis was used to determine the correlation 

coefficient (R2) between the concentration of HMGB1 in the cell supernatant and the percentage of 

cell death in vitro in CNS-1 cells infected with the proapoptotic Ads. *, P < 0.05. C, Kaplan Meier 

survival curves of rats implanted with CNS-1 cells in the brain and treated 4 d later with intratumoral 

injection of saline (n = 9), Ad-TK (n = 7), Ad-TNF-α (n = 5), Ad-FasL (n = 9), or Ad-TRAIL (n = 8). Ad-TK–

treated rats received GCV. *, P < 0.05 versus saline; ^, P < 0.05 versus Ad-FasL (Mantel log-rank test). 

Representative microphotographs show the appearance of the tumor at the time of treatment (day 

4), as assessed by vimentin staining. Tumor volume is indicated; scale bar, 1 mm. D, serum levels of 

HMGB1 were determined by ELISA 5 d after the treatment. *, P < 0.05 versus saline (one-way 

ANOVA followed by Tukey's test). 

Fig. 2. Distribution of therapeutic targets of proapoptotic molecules within intracranial CNS-1 tumors 

and peritumoral brain tissue. Rats were implanted in the striatum with CNS-1 tumors and 9 d later 

brains were processed for immunocytochemistry. Confocal microphotographs show detection of 

therapeutic targets (green) using specific antibodies against the death receptors TNFR1, TRAILR2, 

and Fas, whereas proliferating cells, the target for TK+GCV, were stained with an anti-Ki67 antibody. 

Tumor cells were labeled with anti-vimentin antibodies (red); neurons were stained with anti-NeuN 

(red); and astrocytes were labeled with anti-GFAP antibodies (red). Nuclei were stained with 4′,6-

diamidino-2-phenylindole (blue). T, tumor area; N, necrotic patch. Arrows, cells expressing the 

therapeutic target indicated. Dashed line, tumor border. Scale bars, 10 μm. 

Fig. 3. Acute toxicity of proapoptotic Ads after injection into normal brain. Lewis rats (n = 

4/treatment) were injected in the striatum with saline, Ad-TNF-α, Ad-TRAIL, Ad-FasL, or Ad-TK. Rats 

treated with Ad-TK received GCV. After 7 d (A) post vector delivery, neuropathologic analysis of the 

brain was assessed by Nissl staining and immunocytochemistry using antibodies against TH, MBP, 

MHCII, CD68 (macrophages), and CD8 (cytotoxic T cells). Scale bar, 2 mm. B, the body weight of the 

rats was assessed daily. *, P < 0.05 versus saline (randomization test). 

Fig. 4. Role of HMGB1 in mediating the efficacy of immunotherapy using proapoptotic Ads combined 

with Ad-Flt3L. A, Kaplan-Meier survival curve of Lewis rats that were implanted in the brain with 

CNS-1 tumors and treated 9 d later with an intratumoral injection of saline (n = 9), Ad-TK (n = 11), or 

Ad-FasL (n = 8) alone or in combination with Ad-Flt3L (n = 10/group). Rats treated with Ad-TK 

received GCV. *, P < 0.05 versus saline; ^, P < 0.05 versus Ad-TK; o, P < 0.05 versus Ad-FasL+Ad-Flt3L 

(Mantel log-rank test). Representative microphotographs show the appearance of the tumor at the 

time of treatment, as assessed by vimentin staining. Tumor volume is indicated. Scale bar, 1 mm. B, 

serum levels of HMGB1 were determined by ELISA 5 d after the treatment. *, P < 0.05 versus saline 

(one-way ANOVA followed by Tukey's test). C, tumor-bearing rats received intratumoral injection of 
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saline (n = 10) or Ad-TK+Ad-Flt3L (n = 12), followed by GCV and glycyrrhizin (Gly), an antagonist of 

HMGB1 (n = 5-6/group). *, P < 0.05 versus saline; ^, P < 0.05 versus Ad-TK+Ad-Flt3L+Gly (Mantel log-

rank test). D, Ad-TK+GCV+Ad-Flt3L–treated rats that survived over 90 d after primary tumor 

implantation were rechallenged in the contralateral striatum (left) with a second CNS-1 implant. 

Rechallenged long-term survivors received glycyrrhizin (SURVIVOR+GLY, n = 6) or vehicle (SURVIVOR, 

n = 6) for 15 d. Naïve rats were implanted with CNS-1 tumor as controls for tumor growth (NAÏVE, n 

= 6). *, P < 0.05 versus naïve (Mantel log-rank test). 

Fig. 5. Acute neurotoxicity of combined proapoptotic/immune-stimulatory gene therapy after 

injection into normal brain tissue. Lewis rats were injected in the striatum with saline, Ad-FasL+Ad-

Flt3L, Ad-TK+Ad-Flt3L, or an Ad without transgene (Ad0). Rats treated with Ad-TK+Ad-Flt3L received 

GCV. Seven days post vector delivery, neuropathologic analysis of the brain was assessed by Nissl 

staining and immunocytochemistry using antibodies against TH, MBP, MHCII, CD68 (macrophages), 

and CD8 (cytotoxic T cells). Scale bar, 2 mm. 

Fig. 6. Induction of cell death and release of HMGB1 from human GBM cells in vitro. A, human GBM 

cell lines (U251 and U87) and primary GBM cell cultures (IN2045 and IN859) were infected with Ad-

TK. Untreated cells and cells infected with an Ad containing no transgene (Ad0) were used as 

controls. Twenty-four hours after infection, cells infected with Ad-TK were incubated with 25 μmol/L 

GCV. Cell death was determined 72 h after addition of GCV by flow cytometric analysis of Annexin V-

PI–stained cells. *, P < 0.05 versus mock (one-way ANOVA followed by Tukey's test). B, release of 

HMB1 was assessed in the cell culture supernatant by ELISA. *, P < 0.05 versus mock (one-way 

ANOVA followed by Tukey's test). 
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FIGURE 4 

  



Candolfi M (2010) 
PMID: 19570774 

26 
 

FIGURE 5 

  



Candolfi M (2010) 
PMID: 19570774 

27 
 

FIGURE 6 
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