48 research outputs found

    Modeling dependency structures in 450k DNA methylation data

    Get PDF
    Motivation: DNA methylation has been shown to be spatially dependent across chromosomes. Previous studies have focused on the influence of genomic context on the dependency structure, while not considering differences in dependency structure between individuals. Results: We modeled spatial dependency with a flexible framework to quantify the dependency structure, focusing on inter-individual differences by exploring the association between dependency parameters and technical and biological variables. The model was applied to a subset of the Finnish Twin Cohort study (N = 1611 individuals). The estimates of the dependency parameters varied considerably across individuals, but were generally consistent across chromosomes within individuals. The variation in dependency parameters was associated with bisulfite conversion plate, zygosity, sex and age. The age differences presumably reflect accumulated environmental exposures and/or accumulated small methylation differences caused by stochastic mitotic events, establishing recognizable, individual patterns more strongly seen in older individuals.Peer reviewe

    Does maternal genetic liability to folate deficiency influence the risk of antiseizure medication-associated language impairment and autistic traits in children of women with epilepsy?

    Get PDF
    Background: Prenatal exposure to antiseizure medication (ASM) may lead to low plasma folate concentrations and is associated with impaired neurodevelopment. Objectives: To examine whether maternal genetic liability to folate deficiency interacts with ASM-associated risk of language impairment and autistic traits in children of women with epilepsy. Methods: We included children of women with and without epilepsy and with available genetic data enrolled in the Norwegian Mother, Father, and Child Cohort Study. Information on ASM use, folic acid supplement use and dose, dietary folate intake, child autistic traits, and child language impairment was obtained from parent-reported questionnaires. Using logistic regression, we examined the interaction between prenatal ASM exposure and maternal genetic liability to folate deficiency expressed as polygenic risk score of low folate concentrations or maternal rs1801133 genotype (CC or CT/TT) on risk of language impairment or autistic traits. Results: We included 96 children of women with ASM-treated epilepsy, 131 children of women with ASM-untreated epilepsy, and 37,249 children of women without epilepsy. The polygenic risk score of low folate concentrations did not interact with the ASM-associated risk of language impairment or autistic traits in ASM-exposed children of women with epilepsy compared with ASM-unexposed children aged 1.5–8 y. ASM-exposed children had increased risk of adverse neurodevelopment regardless of maternal rs1801133 genotype {adjusted odds ratio [aOR] for language impairment aged 8 y was 2.88 [95% confidence interval (CI): 1.00, 8.26] if CC and aOR 2.88 [95% CI: 1.10, 7.53] if CT/TT genotypes}. In children of women without epilepsy aged 3 y, those with maternal rs1801133 CT/TT compared with CC genotype had increased risk of language impairment (aOR: 1.18; 95% CI: 1.05, 1.34). Conclusions: In this cohort of pregnant women reporting widespread use of folic acid supplements, maternal genetic liability to folate deficiency did not significantly influence the ASM-associated risk of impaired neurodevelopment.publishedVersio

    Methotrexate Treatment of Newly Diagnosed RA Patients Is Associated With DNA Methylation Differences at Genes Relevant for Disease Pathogenesis and Pharmacological Action

    Get PDF
    Background: Methotrexate (MTX) is the fi rst line treatment of rheumatoid arthritis (RA), and methylation changes in bulk T cells have been reported after treatment with MTX. We have investigated cell-type speci fi c DNA methylation changes across the genome in naïve and memory CD4 + T cells before and after MTX treatment of RA patients. DNA methylation pro fi les of newly diagnosed RA patients (N=9) were assessed by reduced representation bisul fi te sequencing. Results: We found that MTX treatment signi fi cantly in fl uenced DNA methylation levels at multiple CpG sites in both cell populations. Interestingly, we identi fi ed differentially methylated sites annotated to two genes; TRIM15 and SORC2, previously reported to predict treatment outcome in RA patients when measured in bulk T cells. Furthermore, several of the genes, including STAT3, annotated to the signi fi cant CpG sites are relevant for RA susceptibility or the action of MTX. Conclusion: We detected CpG sites that were associated with MTX treatment in CD4 + naïve and memory T cells isolated from RA patients. Several of these sites overlap genetic regions previously associated with RA risk and MTX treatment outcome

    Long-Term Use of Amoxicillin Is Associated with Changes in Gene Expression and DNA Methylation in Patients with Low Back Pain and Modic Changes

    Get PDF
    Long-term antibiotics are prescribed for a variety of medical conditions, recently including low back pain with Modic changes. The molecular impact of such treatment is unknown. We conducted longitudinal transcriptome and epigenome analyses in patients (n = 100) receiving amoxicillin treatment or placebo for 100 days in the Antibiotics in Modic Changes (AIM) study. Gene expression and DNA methylation were investigated at a genome-wide level at screening, after 100 days of treatment, and at one-year follow-up. We identified intra-individual longitudinal changes in gene expression and DNA methylation in patients receiving amoxicillin, while few changes were observed in patients receiving placebo. After 100 days of amoxicillin treatment, 28 genes were significantly differentially expressed, including the downregulation of 19 immunoglobulin genes. At one-year follow-up, the expression levels were still not completely restored. The significant changes in DNA methylation (n = 4548 CpGs) were mainly increased methylation levels between 100 days and one-year follow-up. Hence, the effects on gene expression occurred predominantly during treatment, while the effects on DNA methylation occurred after treatment. In conclusion, unrecognized side effects of long-term amoxicillin treatment were revealed, as alterations were observed in both gene expression and DNA methylation that lasted long after the end of treatment.publishedVersio

    Legitimacy, communication and leadership in the Turnaround game

    Get PDF
    We study the effectiveness of leaders for inducing coordinated organizational change to a more efficient equilibrium, i.e., a turnaround. We compare communication from leaders to incentive increases and also compare the effectiveness of randomly selected and elected leaders. While all interventions yield shifts to more efficient equilibria, communication from leaders has a greater effect than incentives. Moreover, leaders who are elected by followers are significantly better at improving their group's outcome than randomly selected ones. The improved effectiveness of elected leaders results from sending more performance-relevant messages. Our results are evidence that the way in which leaders are selected affects their legitimacy and the degree to which they influence followers. Finally, we observed that a combination of factors- incentive increases and elected leaders-yield near universal turnarounds to full efficiency

    Genome-wide blood DNA methylation alterations at regulatory elements and heterochromatic regions in monozygotic twins discordant for obesity and liver fat

    Get PDF
    Abstract Background The current epidemic of obesity and associated diseases calls for swift actions to better understand the mechanisms by which genetics and environmental factors affect metabolic health in humans. Monozygotic (MZ) twin pairs showing discordance for obesity suggest that epigenetic influences represent one such mechanism. We studied genome-wide leukocyte DNA methylation variation in 30 clinically healthy young adult MZ twin pairs discordant for body mass index (BMI; average within-pair BMI difference: 5.4 ± 2.0 kg/m2). Results There were no differentially methylated cytosine-guanine (CpG) sites between the co-twins discordant for BMI. However, stratification of the twin pairs based on the level of liver fat accumulation revealed two epigenetically highly different groups. Significant DNA methylation differences (n = 1,236 CpG sites (CpGs)) between the co-twins were only observed if the heavier co-twins had excessive liver fat (n = 13 twin pairs). This unhealthy pattern of obesity was coupled with insulin resistance and low-grade inflammation. The differentially methylated CpGs included 23 genes known to be associated with obesity, liver fat, type 2 diabetes mellitus (T2DM) and metabolic syndrome, and potential novel metabolic genes. Differentially methylated CpG sites were overrepresented at promoters, insulators, and heterochromatic and repressed regions. Based on predictions by overlapping histone marks, repressed and weakly transcribed sites were significantly more often hypomethylated, whereas sites with strong enhancers and active promoters were hypermethylated. Further, significant clustering of differentially methylated genes in vitamin, amino acid, fatty acid, sulfur, and renin-angiotensin metabolism pathways was observed. Conclusions The methylome in leukocytes is altered in obesity associated with metabolic disturbances, and our findings indicate several novel candidate genes and pathways in obesity and obesity-related complications

    DNA Methylation and Gene Expression Changes in Monozygotic Twins Discordant for Psoriasis: Identification of Epigenetically Dysregulated Genes

    Get PDF
    Monozygotic (MZ) twins do not show complete concordance for many complex diseases; for example, discordance rates for autoimmune diseases are 20%–80%. MZ discordance indicates a role for epigenetic or environmental factors in disease. We used MZ twins discordant for psoriasis to search for genome-wide differences in DNA methylation and gene expression in CD4+ and CD8+ cells using Illumina's HumanMethylation27 and HT-12 expression assays, respectively. Analysis of these data revealed no differentially methylated or expressed genes between co-twins when analyzed separately, although we observed a substantial amount of small differences. However, combined analysis of DNA methylation and gene expression identified genes where differences in DNA methylation between unaffected and affected twins were correlated with differences in gene expression. Several of the top-ranked genes according to significance of the correlation in CD4+ cells are known to be associated with psoriasis. Further, gene ontology (GO) analysis revealed enrichment of biological processes associated with the immune response and clustering of genes in a biological pathway comprising cytokines and chemokines. These data suggest that DNA methylation is involved in an epigenetic dysregulation of biological pathways involved in the pathogenesis of psoriasis. This is the first study based on data from MZ twins discordant for psoriasis to detect epigenetic alterations that potentially contribute to development of the disease
    corecore