121 research outputs found

    How Lipid-Specific T Cells Become Effectors: The Differentiation of iNKT Subsets

    Get PDF
    In contrast to peptide-recognizing T cells, invariant natural killer T (iNKT) cells express a semi-invariant T cell receptor that specifically recognizes self- or foreign-lipids presented by CD1d molecules. There are three major functionally distinct effector states for iNKT cells. Owning to these innate-like effector states, iNKT cells have been implicated in early protective immunity against pathogens. Yet, growing evidence suggests that iNKT cells play a role in tissue homeostasis as well. In this review, we discuss current knowledge about the underlying mechanisms that regulate the effector states of iNKT subsets, with a highlight on the roles of a variety of transcription factors and describe how each subset influences different facets of thymus homeostasis

    Strong agonist ligands for the T cell receptor do not mediate positive selection of functional CD8+ T cells

    Get PDF
    AbstractPositive selection of functional CD8+ T cells expressing an MHC class I-restricted T cell receptor can be induced in fetal thymus organ culture by class I-binding peptides related to the antigenic peptide ligand. Peptides that act as antagonist or weak agonist/antagonist ligands for mature T cells work efficiently in this regard. In the present study, we have investigated whether low concentrations of the original agonist peptide, or variants that still have a strong agonist activity can also mediate positive selection. The antigenic peptide did not Induce positive selection at any concentration tested. A strong agonist variant was capable of stimulating the differentiation of TCRhl CD8+ cells, giving the appearance of phenotypic positive selection. However, these cells lacked biological function, since they could not proliferate In response to antigen. The most efficient positive selection resulted with Ilgands that did not activate mature T cells or stimulate negative selection

    Thymic emigration revisited

    Get PDF
    Conventional αβ T cell precursors undergo positive selection in the thymic cortex. When this is successful, they migrate to the medulla and are exposed to tissue-specific antigens (TSA) for purposes of central tolerance, and they undergo maturation to become functionally responsive T cells. It is commonly understood that thymocytes spend up to 2 wk in the medulla undergoing these final maturation steps before emigrating to peripheral lymphoid tissues. In addition, emigration is thought to occur via a stochastic mechanism whereby some progenitors leave early and others leave late—a so-called “lucky dip” process. However, recent research has revealed that medullary thymocytes are a heterogeneous mix of naive αβ T cell precursors, memory T cells, natural killer T cells, and regulatory T cells. Given this, we revisited the question of how long it takes naive αβ T cell precursors to emigrate. We combined the following three approaches to study this question: BrdU labeling, intrathymic injection of a cellular tag, and RAG2p-GFP reporter mice. We established that, on average, naive αβ T cell precursors emigrate only 4–5 d after becoming single-positive (SP) thymocytes. Furthermore, emigration occurs via a strict “conveyor belt” mechanism, where the oldest thymocytes leave first

    The timing of TCRα expression critically influences T cell development and selection

    Get PDF
    Sequential rearrangement of the T cell receptor for antigen (TCR) β and α chains is a hallmark of thymocyte development. This temporal control is lost in TCR transgenics because the α chain is expressed prematurely at the CD4−CD8− double negative (DN) stage. To test the importance of this, we expressed the HYα chain at the physiological CD4+CD8+ double positive (DP) stage. The reduced DP and increased DN cellularity typically seen in TCR transgenics was not observed when the α chain was expressed at the appropriate stage. Surprisingly, antigen-driven selection events were also altered. In male mice, thymocyte deletion now occurred at the single positive or medullary stage. In addition, no expansion of CD8αα intestinal intraepithelial lymphocytes (IELs) was observed, despite the fact that HY transgenics have been used to model IEL development. Collectively, these data establish the importance of proper timing of TCR expression in thymic development and selection and emphasize the need to use models that most accurately reflect the physiologic process

    IL-4 sensitivity shapes the peripheral CD8\u3csup\u3e+\u3c/sup\u3e T cell pool and response to infection

    Get PDF
    Previous studies have revealed that a population of innate memory CD8+ T cells is generated in response to IL-4, first appearing in the thymus and bearing high expression levels of Eomesodermin (Eomes) but not T-bet. However, the antigen specificity and functional properties of these cells is poorly defined. In this study, we show that IL-4 regulates not only the frequency and function of innate memory CD8+ T cells, but also regulates Eomes expression levels and functional reactivity of naive CD8+ T cells. Lack of IL-4 responsiveness attenuates the capacity of CD8+ T cells to mount a robust response to lymphocytic choriomeningitis virus infection, with both quantitative and qualitative effects on effector and memory antigen-specific CD8+ T cells. Unexpectedly, we found that, although numerically rare, memory phenotype CD8+ T cells in IL-4Rα–deficient mice exhibited enhanced reactivity after in vitro and in vivo stimulation. Importantly, our data revealed that these effects of IL-4 exposure occur before, not during, infection. Together, these data show that IL-4 influences the entire peripheral CD8+ T cell pool, influencing expression of T-box transcription factors, functional reactivity, and the capacity to respond to infection. These findings indicate that IL-4, a canonical Th2 cell cytokine, can sometimes promote rather than impair Th1 cell–type immune responses

    Identification of a novel population of Langerin+ dendritic cells

    Get PDF
    Langerhans cells (LCs) are antigen-presenting cells that reside in the epidermis of the skin and traffic to lymph nodes (LNs). The general role of these cells in skin immune responses is not clear because distinct models of LC depletion resulted in opposite conclusions about their role in contact hypersensitivity (CHS) responses. While comparing these models, we discovered a novel population of LCs that resides in the dermis and does not represent migrating epidermal LCs, as previously thought. Unlike epidermal LCs, dermal Langerin+ dendritic cells (DCs) were radiosensitive and displayed a distinct cell surface phenotype. Dermal Langerin+ DCs migrate from the skin to the LNs after inflammation and in the steady state, and represent the majority of Langerin+ DCs in skin draining LNs. Both epidermal and dermal Langerin+ DCs were depleted by treatment with diphtheria toxin in Lang-DTREGFP knock-in mice. In contrast, transgenic hLang-DTA mice lack epidermal LCs, but have normal numbers of dermal Langerin+ DCs. CHS responses were abrogated upon depletion of both epidermal and dermal LCs, but were unaffected in the absence of only epidermal LCs. This suggests that dermal LCs can mediate CHS and provides an explanation for previous differences observed in the two-model systems

    Impaired Epstein-Barr virus-specific neutralizing antibody response during acute infectious mononucleosis is coincident with global B-cell dysfunction

    Get PDF
    Here we present evidence for previously unappreciated B-cell immune dysregulation during acute Epstein-Barr virus (EBV)-associated infectious mononucleosis (IM). Longitudinal analyses revealed that patients with acute IM have undetectable EBV-specific neutralizing antibodies and gp350-specific B-cell responses, which were associated with a significant reduction in memory B cells and no evidence of circulating antibody-secreting cells. These observations correlate with dysregulation of tumor necrosis factor family members BAFF and APRIL and increased expression of FAS on circulating B cells

    Basal Immunoglobulin Signaling Actively Maintains Developmental Stage in Immature B Cells

    Get PDF
    In developing B lymphocytes, a successful V(D)J heavy chain (HC) immunoglobulin (Ig) rearrangement establishes HC allelic exclusion and signals pro-B cells to advance in development to the pre-B stage. A subsequent functional light chain (LC) rearrangement then results in the surface expression of IgM at the immature B cell stage. Here we show that interruption of basal IgM signaling in immature B cells, either by the inducible deletion of surface Ig via Cre-mediated excision or by incubating cells with the tyrosine kinase inhibitor herbimycin A or the phosphatidylinositol 3-kinase inhibitor wortmannin, led to a striking “back-differentiation” of cells to an earlier stage in B cell development, characterized by the expression of pro-B cell genes. Cells undergoing this reversal in development also showed evidence of new LC gene rearrangements, suggesting an important role for basal Ig signaling in the maintenance of LC allelic exclusion. These studies identify a previously unappreciated level of plasticity in the B cell developmental program, and have important implications for our understanding of central tolerance mechanisms
    corecore