201 research outputs found

    Phenothiazines as a solution for multidrug resistant tuberculosis: From the origin to present

    Get PDF
    Historically, multiplicity of actions in synthetic compounds is a rule rather than exception. The science of non-antibiotics evolved in this background. From the antimalarial and antitrypanosomial dye methylene blue, chemically similar compounds, the phenothiazines, were developed. The phenothiazines were first recognised for their antipsychotic properties, but soon after their antimicrobial functions came to be known and then such compounds were designated as non-antibiotics. The emergence of highly drug-resistant bacteria had initiated an urgent need to search for novel affordable compounds. Several phenothiazines awakened the interest among scientists to determine their antimycobacterial activity. Chlorpromazine, trifluoperazine, methdilazine and thioridazine were found to have distinct antitubercular action. Thioridazine took the lead as researchers repeatedly claimed its potentiality. Although thioridazine is known for its central nervous system and cardiotoxic side-effects, extensive and repeated in vitro and in vivo studies by several research groups revealed that a very small dose of thioridazine is required to kill tubercle bacilli inside macrophages in the lungs, where the bacteria try to remain and multiply silently. Such a small dose is devoid of its adverse side-effects. Recent studies have shown that the (–) thioridazine is a more active antimicrobial agent and devoid of the toxic side effects normally encountered. This review describes the possibilities of bringing down thioridazine and its (–) form to be combined with other antitubercular drugs to treat infections by drug-resistant strains of Mycobacterium tuberculosis and try to eradicate this deadly disease. [Int Microbiol 2015; 18(1):1-12]Keywords: Mycobacterium tuberculosis · phenotiazines · thioridazine · tuberculosi

    Phenothiazines as a solution for multidrug resistant tuberculosis:From the origin to present

    Get PDF
    Historically, multiplicity of actions in synthetic compounds is a rule rather than exception. The science of non-antibiotics evolved in this background. From the antimalarial and antitrypanosomial dye methylene blue, chemically similar compounds, the phenothiazines, were developed. The phenothiazines were first recognised for their antipsychotic properties, but soon after their antimicrobial functions came to be known and then such compounds were designated as non-antibiotics. The emergence of highly drug-resistant bacteria had initiated an urgent need to search for novel affordable compounds. Several phenothiazines awakened the interest among scientists to determine their antimycobacterial activity. Chlorpromazine, trifluoperazine, methdilazine and thioridazine were found to have distinct antitubercular action. Thioridazine took the lead as researchers repeatedly claimed its potentiality. Although thioridazine is known for its central nervous system and cardiotoxic side-effects, extensive and repeated in vitro and in vivo studies by several research groups revealed that a very small dose of thioridazine is required to kill tubercle bacilli inside macrophages in the lungs, where the bacteria try to remain and multiply silently. Such a small dose is devoid of its adverse side-effects. Recent studies have shown that the (–) thioridazine is a more active antimicrobial agent and devoid of the toxic side effects normally encountered. This review describes the possibilities of bringing down thioridazine and its (–) form to be combined with other antitubercular drugs to treat infections by drug-resistant strains of Mycobacterium tuberculosis and try to eradicate this deadly disease. [Int Microbiol 2015; 18(1):1-12]Keywords: Mycobacterium tuberculosis · phenotiazines · thioridazine · tuberculosi

    CRISPR/Cascade 9-Mediated Genome Editing-Challenges and Opportunities

    Get PDF
    Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and Cascade 9 (also known as Cas9, CRISPR associated protein 9) confer protection against invading viruses or plasmids. The CRISPR/Cascade 9 system constitutes one of the most powerful genome technologies available to researchers today. So far, this technology has enabled efficient genome editing and modification in several model organisms and has successfully been used in biomedicine and biomedical engineering. However, challenges for efficient and safe genetic manipulation in several organisms persist. Here, we review functional approaches and future challenges associated with the use of the CRISPR/Cascade 9 genome editing system and discuss opportunities, ethical issues and future directions within this field

    Removal of 2-butoxyethanol gaseous emissions by biotrickling filtration packed with polyurethane foam

    Get PDF
    The removal of 2-butoxyethanol from gaseous emissions was studied using two biotrickling filters (BTF1 and BTF2) packed with polyurethane foam. Two different inoculum sources were used: a pure culture of Pseudomonas sp. BOE200 (BTF1) and activated sludge from a municipal wastewater treatment plant (BTF2). The bioreactors were operated at inlet loads (ILs) of 130 and 195 g m−3 hour−1 and at an empty bed residence time (EBRT) of 12.5 s. Under an IL of ∼130 g m−3 hour−1, BTF1 presented higher elimination capacities (ECs) than BTF2, with average values of 106 ± 7 and 68 ± 8 g m−3 hour−1, respectively. However, differences in ECs between BTFs were decreased by reducing the irrigation intervals from 1 min every 12 min to 1 min every 2 hours in BTF2. Average values of EC were 111 ± 25 and 90 ± 7 g m−3 hour−1 for BTF1 and BTF2, respectively, when working at an IL of ∼195 g m−3 hour−1. Microbial analysis revealed a significant shift in the microbial community of BTF1 inoculated with Pseudomonas sp. BOE200. At the end of the experiment, the species Microbacterium sp., Chryseobacterium sp., Acinetobacter sp., Pseudomonas sp. and Mycobacterium sp. were detected. In BTF2 inoculated with activated sludge, the denaturing gradient gel electrophoresis (DGGE) technique showed a diverse microbial community including species that was able to use 2-butoxyethanol as its carbon source, such as Pseudomonas aeruginosa and Pseudomonas putida as representative species. Although BTF1 inoculated with Pseudomonas sp. BOE200 and higher gas velocity (probably greater gas/liquid mass transfer rate) showed a slight improvement in performance, the use of activated sludge as inoculum seems to be a more feasible option for the industrial application of this technology

    Histone deacetylases 1, 2 and 3 are highly expressed in prostate cancer and HDAC2 expression is associated with shorter PSA relapse time after radical prostatectomy

    Get PDF
    High activity of histone deacetylases (HDACs) causes epigenetic alterations associated with malignant cell behaviour. Consequently, HDAC inhibitors have entered late-phase clinical trials as new antineoplastic drugs. However, little is known about expression and function of specific HDAC isoforms in human tumours including prostate cancer. We investigated the expression of class I HDACs in 192 prostate carcinomas by immunohistochemistry and correlated our findings to clinicopathological parameters including follow-up data. Class I HDAC isoforms were strongly expressed in the majority of the cases (HDAC1: 69.8%, HDAC2: 74%, HDAC3: 94.8%). High rates of HDAC1 and HDAC2 expression were significantly associated with tumour dedifferentiation. Strong expression of all HDACs was accompanied by enhanced tumour cell proliferation. In addition, HDAC2 was an independent prognostic marker in our prostate cancer cohort. In conclusion, we showed that the known effects of HDACs on differentiation and proliferation of cancer cells observed in vitro can also be confirmed in vivo. The class I HDAC isoforms 1, 2 and 3 are differentially expressed in prostate cancer, which might be important for upcoming studies on HDAC inhibitors in this tumour entity. Also, the highly significant prognostic value of HDAC2 clearly deserves further study

    The TESS-Keck Survey. III. A Stellar Obliquity Measurement of TOI-1726 c

    Get PDF
    We report the measurement of a spectroscopic transit of TOI-1726c, one of two planets transiting a G-type star with V = 6.9 in the Ursa Major Moving Group (~400 Myr). With a precise age constraint from cluster membership, TOI-1726 provides a great opportunity to test various obliquity excitation scenarios that operate on different timescales. By modeling the Rossiter–McLaughlin (RM) effect, we derived a sky-projected obliquity of −1^(+35)_(−32)∘. This result rules out a polar/retrograde orbit and is consistent with an aligned orbit for planet c. Considering the previously reported, similarly prograde RM measurement of planet b and the transiting nature of both planets, TOI-1726 tentatively conforms to the overall picture that compact multitransiting planetary systems tend to have coplanar, likely aligned orbits. TOI-1726 is also a great atmospheric target for understanding differential atmospheric loss of sub-Neptune planets (planet b 2.2 R⊕ and c 2.7 R⊕ both likely underwent photoevaporation). The coplanar geometry points to a dynamically cold history of the system that simplifies any future modeling of atmospheric escape

    Google Goes Cancer: Improving Outcome Prediction for Cancer Patients by Network-Based Ranking of Marker Genes

    Get PDF
    Predicting the clinical outcome of cancer patients based on the expression of marker genes in their tumors has received increasing interest in the past decade. Accurate predictors of outcome and response to therapy could be used to personalize and thereby improve therapy. However, state of the art methods used so far often found marker genes with limited prediction accuracy, limited reproducibility, and unclear biological relevance. To address this problem, we developed a novel computational approach to identify genes prognostic for outcome that couples gene expression measurements from primary tumor samples with a network of known relationships between the genes. Our approach ranks genes according to their prognostic relevance using both expression and network information in a manner similar to Google's PageRank. We applied this method to gene expression profiles which we obtained from 30 patients with pancreatic cancer, and identified seven candidate marker genes prognostic for outcome. Compared to genes found with state of the art methods, such as Pearson correlation of gene expression with survival time, we improve the prediction accuracy by up to 7%. Accuracies were assessed using support vector machine classifiers and Monte Carlo cross-validation. We then validated the prognostic value of our seven candidate markers using immunohistochemistry on an independent set of 412 pancreatic cancer samples. Notably, signatures derived from our candidate markers were independently predictive of outcome and superior to established clinical prognostic factors such as grade, tumor size, and nodal status. As the amount of genomic data of individual tumors grows rapidly, our algorithm meets the need for powerful computational approaches that are key to exploit these data for personalized cancer therapies in clinical practice

    Revisiting the mechanism of coagulation factor XIII activation and regulation from a structure/functional perspective

    Get PDF
    The activation and regulation of coagulation Factor XIII (FXIII) protein has been the subject of active research for the past three decades. Although discrete evidence exists on various aspects of FXIII activation and regulation a combinatorial structure/functional view in this regard is lacking. In this study, we present results of a structure/function study of the functional chain of events for FXIII. Our study shows how subtle chronological submolecular changes within calcium binding sites can bring about the detailed transformation of the zymogenic FXIII to its activated form especially in the context of FXIIIA and FXIIIB subunit interactions. We demonstrate what aspects of FXIII are important for the stabilization (first calcium binding site) of its zymogenic form and the possible modes of deactivation (thrombin mediated secondary cleavage) of the activated form. Our study for the first time provides a structural outlook of the FXIIIA 2 B 2 heterotetramer assembly, its association and dissociation. The FXIIIB subunits regulatory role in the overall process has also been elaborated upon. In summary, this study provides detailed structural insight into the mechanisms of FXIII activation and regulation that can be used as a template for the development of future highly specific therapeutic inhibitors targeting FXIII in pathological conditions like thrombosis
    corecore