106 research outputs found

    Fanconi-BRCA pathway mutations in childhood T-cell acute lymphoblastic leukemia

    Get PDF
    BRCA2 (also known as FANCD1) is a core component of the Fanconi pathway and suppresses transformation of immature T-cells in mice. However, the contribution of Fanconi-BRCA pathway deficiency to human T-cell acute lymphoblastic leukemia (T-ALL) remains undefined. We identified point mutations in 9 (23%) of 40 human T-ALL cases analyzed, with variant allele fractions consistent with heterozygous mutations early in tumor evolution. Two of these mutations were present in remission bone marrow specimens, suggesting germline alterations. BRCA2 was the most commonly mutated gene. The identified Fanconi-BRCA mutations encode hypomorphic or null alleles, as evidenced by their inability to fully rescue Fanconi-deficient cells from chromosome breakage, cytotoxicity and/or G2/M arrest upon treatment with DNA cross-linking agents. Disabling the tumor suppressor activity of the Fanconi-BRCA pathway is generally thought to require biallelic gene mutations. However, all mutations identified were monoallelic, and most cases appeared to retain expression of the wild-type allele. Using isogenic T-ALL cells, we found that BRCA2 haploinsufficiency induces selective hypersensitivity to ATR inhibition, in vitro and in vivo. These findings implicate Fanconi-BRCA pathway haploinsufficiency in the molecular pathogenesis of T-ALL, and provide a therapeutic rationale for inhibition of ATR or other druggable effectors of homologous recombination

    Advancing Research on the Complex Interrelations Between Atrial Fibrillation and Heart Failure A Report From a US National Heart, Lung, and Blood Institute Virtual Workshop

    Get PDF
    The interrelationships between atrial fibrillation (AF) and heart failure (HF) are complex and poorly understood, yet the number of patients with AF and HF continues to increase worldwide. Thus, there is a need for initiatives that prioritize research on the intersection between AF and HF. This article summarizes the proceedings of a virtual workshop convened by the US National Heart, Lung, and Blood Institute to identify important research opportunities in AF and HF. Key knowledge gaps were reviewed and research priorities were proposed for characterizing the pathophysiological overlap and deleterious interactions between AF and HF; preventing HF in people with AF; preventing AF in individuals with HF; and addressing symptom burden and health status outcomes in AF and HF. These research priorities will hopefully help inform, encourage, and stimulate innovative, cost-efficient, and transformative studies to enhance the outcomes of patients with AF and HF

    PRC2 loss induces chemoresistance by repressing apoptosis in T cell acute lymphoblastic leukemia

    Get PDF
    The tendency of mitochondria to undergo or resist BCL2-controlled apoptosis (so-called mitochondrial priming) is a powerful predictor of response to cytotoxic chemotherapy. Fully exploiting this finding will require unraveling the molecular genetics underlying phenotypic variability in mitochondrial priming. Here, we report that mitochondria) apoptosis resistance in T cell acute lymphoblastic leukemia (T-ALL) is mediated by inactivation of polycomb repressive complex 2 (PRC2). In T-ALL clinical specimens, loss-of-function mutations of PRC2 core components (EZH2, FED, or SUZ12) were associated with mitochondrial apoptosis resistance. In T-ALL cells, PRC2 depletion induced resistance to apoptosis induction by multiple chemotherapeutics with distinct mechanisms of action. PRC2 loss induced apoptosis resistance via transcriptional up-regulation of the LIM domain transcription factor CRIP2 and downstream up-regulation of the mitochondrial chaperone TRAP1. These findings demonstrate the importance of mitochondrial apoptotic priming as a prognostic factor in T-ALL and implicate mitochondrial chaperone function as a molecular determinant of chemotherapy response

    Genomic Profiling of a Randomized Trial of Interferon-α versus Hydroxyurea in MPN Reveals Mutation-Specific Responses

    Get PDF
    Although somatic mutations influence the pathogenesis, phenotype, and outcome of myeloproliferative neoplasms (MPNs), little is known about their impact on molecular response to cytoreductive treatment. We performed targeted next-generation sequencing (NGS) on 202 pretreatment samples obtained from patients with MPN enrolled in the DALIAH trial (A Study of Low Dose Interferon Alpha Versus Hydroxyurea in Treatment of Chronic Myeloid Neoplasms; #NCT01387763), a randomized controlled phase 3 clinical trial, and 135 samples obtained after 24 months of therapy with recombinant interferon-alpha (IFNα) or hydroxyurea. The primary aim was to evaluate the association between complete clinicohematologic response (CHR) at 24 months and molecular response through sequential assessment of 120 genes using NGS. Among JAK2-mutated patients treated with IFNα, those with CHR had a greater reduction in the JAK2 variant allele frequency (median, 0.29 to 0.07; P < .0001) compared with those not achieving CHR (median, 0.27 to 0.14; P < .0001). In contrast, the CALR variant allele frequency did not significantly decline in those achieving CHR or in those not achieving CHR. Treatment-emergent mutations in DNMT3A were observed more commonly in patients treated with IFNα compared with hydroxyurea (P = .04). Furthermore, treatment-emergent DNMT3A mutations were significantly enriched in IFNα–treated patients not attaining CHR (P = .02). A mutation in TET2, DNMT3A, or ASXL1 was significantly associated with prior stroke (age-adjusted odds ratio, 5.29; 95% confidence interval, 1.59-17.54; P = .007), as was a mutation in TET2 alone (age-adjusted odds ratio, 3.03; 95% confidence interval, 1.03-9.01; P = .044). At 24 months, we found mutation-specific response patterns to IFNα: (1) JAK2- and CALR-mutated MPN exhibited distinct molecular responses; and (2) DNMT3A-mutated clones/subclones emerged on treatment

    SF3B1-mutant MDS as a distinct disease subtype:a proposal from the International Working Group for the Prognosis of MDS

    Get PDF
    The 2016 revision of the World Health Organization classification of tumors of hematopoietic and lymphoid tissues is characterized by a closer integration of morphology and molecular genetics. Notwithstanding, the myelodysplastic syndrome (MDS) with isolated del(5q) remains so far the only MDS subtype defined by a genetic abnormality. Approximately half of MDS patients carry somatic mutations in spliceosome genes, with SF3B1 being the most commonly mutated one. SF3B1 mutation identifies a condition characterized by ring sideroblasts (RS), ineffective erythropoiesis, and indolent clinical course. A large body of evidence supports recognition of SF3B1-mutant MDSas a distinct nosologic entity. To further validate this notion, we interrogated the data set of the International Working Group for the Prognosis of MDS (IWG-PM). Based on the findings of our analyses, we propose the following diagnostic criteria for SF3B1-mutant MDS: (1) cytopenia as defined by standard hematologic values, (2) somatic SF3B1 mutation, (3) morphologic dysplasia (with or without RS), and (4) bone marrow blasts <5% and peripheral blood blasts <1%. Selected concomitant genetic lesions represent exclusion criteria for the proposed entity. In patients with clonal cytopenia of undetermined significance, SF3B1 mutation is almost invariably associated with subsequent development of overtMDS with RS, suggesting that this genetic lesion might provide presumptive evidence of MDS in the setting of persistent unexplained cytopenia. Diagnosis of SF3B1-mutant MDS has considerable clinical implications in terms of risk stratification and therapeutic decision making. In fact, this condition has a relatively good prognosis and may respond to luspatercept with abolishment of the transfusion requirement. (Blood. 2020;136(2):157-170)
    • 

    corecore