925 research outputs found

    PhyloPattern: regular expressions to identify complex patterns in phylogenetic trees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To effectively apply evolutionary concepts in genome-scale studies, large numbers of phylogenetic trees have to be automatically analysed, at a level approaching human expertise. Complex architectures must be recognized within the trees, so that associated information can be extracted.</p> <p>Results</p> <p>Here, we present a new software library, PhyloPattern, for automating tree manipulations and analysis. PhyloPattern includes three main modules, which address essential tasks in high-throughput phylogenetic tree analysis: node annotation, pattern matching, and tree comparison. PhyloPattern thus allows the programmer to focus on: i) the use of predefined or user defined annotation functions to perform immediate or deferred evaluation of node properties, ii) the search for user-defined patterns in large phylogenetic trees, iii) the pairwise comparison of trees by dynamically generating patterns from one tree and applying them to the other.</p> <p>Conclusion</p> <p>PhyloPattern greatly simplifies and accelerates the work of the computer scientist in the evolutionary biology field. The library has been used to automatically identify phylogenetic evidence for domain shuffling or gene loss events in the evolutionary histories of protein sequences. However any workflow that relies on phylogenetic tree analysis, could be automated with PhyloPattern.</p

    Immunization of Chickens with Newcastle Disease Virus Expressing H5 Hemagglutinin Protects against Highly Pathogenic H5N1 Avian Influenza Viruses

    Get PDF
    Highly-pathogenic avian influenza virus (HPAIV) and Newcastle disease virus (NDV) are the two most important poultry viruses in the world. Natural low-virulence NDV strains have been used as vaccines over the past 70 years with proven track records. We have previously developed a reverse genetics system to produce low-virulent NDV vaccine strain LaSota from cloned cDNA. This system allows us to use NDV as a vaccine vector for other avian pathogens.Here, we constructed two recombinant NDVs (rNDVs) each of which expresses the hemagglutinin (HA) gene of HPAIV H5N1 strain A/Vietnam/1203/2004 from an added gene. In one, rNDV (rNDV-HA), the open reading frame (ORF) of HA gene was expressed without modification. In the second, rNDV (rNDV-HAF), the ORF was modified so that the transmembrane and cytoplasmic domains of the encoded HA gene were replaced with those of the NDV F protein. The insertion of either version of the HA ORF did not increase the virulence of the rNDV vector. The HA protein was found to be incorporated into the envelopes of both rNDV-HA and rNDV-HAF. However, there was an enhanced incorporation of the HA protein in rNDV-HAF. Chickens immunized with a single dose of either rNDV-HA or rNDV-HAF induced a high titer of HPAIV H5-specific antibodies and were completely protected against challenge with NDV as well as lethal challenges of both homologous and heterologous HPAIV H5N1.Our results suggest that these chimeric viruses have potential as safe and effective bivalent vaccines against NDV and. HPAIV. These vaccines will be convenient and affordable, which will be highly beneficial to the poultry industry. Furthermore, immunization with these vaccines will permit serological differentiation of vaccinated and avian influenza field virus infected animals

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Asiatic Acid Inhibits Liver Fibrosis by Blocking TGF-beta/Smad Signaling In Vivo and In Vitro

    Get PDF
    Liver fibrosis is a major cause of liver failure, but treatment remains ineffective. In the present study, we investigated the mechanisms and anti-hepatofibrotic activities of asiatic acid (AA) in a rat model of liver fibrosis induced by carbon tetrachloride (CCl4) and in vitro in TGF-beta1-stimulated rat hepatic stellate cell line (HSC-T6). Treatment with AA significantly attenuated CCl4-induced liver fibrosis and functional impairment in a dosage-dependent manner, including blockade of the activation of HSC as determined by inhibiting de novo alpha smooth muscle actin (a-SMA) and collagen matrix expression, and an increase in ALT and AST (all p<0.01). The hepatoprotective effects of AA on fibrosis were associated with upregulation of hepatic Smad7, an inhibitor of TGF-beta signaling, thereby blocking upregulation of TGF-beta1 and CTGF and the activation of TGF-beta/Smad signaling. The anti-fibrosis activity and mechanisms of AA were further detected in vitro in HSC-T6. Addition of AA significantly induced Smad7 expression by HSC-T6 cells, thereby inhibiting TGF-beta1-induced Smad2/3 activation, myofibroblast transformation, and collagen matrix expression in a dosage-dependent manner. In contrast, knockdown of Smad7 in HSC-T6 cells prevented AA-induced inhibition of HSC-T6 cell activation and fibrosis in response to TGF-beta1, revealing an essential role for Smad7 in AA-induced anti-fibrotic activities during liver fibrosis in vivo and in vitro. In conclusion, AA may be a novel therapeutic agent for liver fibrosis. Induction of Smad7-dependent inhibition of TGF-beta/Smad-mediated fibrogenesis may be a central mechanism by which AA protects liver from injury

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Facile whole mitochondrial genome resequencing from nipple aspirate fluid using MitoChip v2.0

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in the mitochondrial genome (mtgenome) have been associated with many disorders, including breast cancer. Nipple aspirate fluid (NAF) from symptomatic women could potentially serve as a minimally invasive sample for breast cancer screening by detecting somatic mutations in this biofluid. This study is aimed at 1) demonstrating the feasibility of NAF recovery from symptomatic women, 2) examining the feasibility of sequencing the entire mitochondrial genome from NAF samples, 3) cross validation of the Human mitochondrial resequencing array 2.0 (MCv2), and 4) assessing the somatic mtDNA mutation rate in benign breast diseases as a potential tool for monitoring early somatic mutations associated with breast cancer.</p> <p>Methods</p> <p>NAF and blood were obtained from women with symptomatic benign breast conditions, and we successfully assessed the mutation load in the entire mitochondrial genome of 19 of these women. DNA extracts from NAF were sequenced using the mitochondrial resequencing array MCv2 and by capillary electrophoresis (CE) methods as a quality comparison. Sequencing was performed independently at two institutions and the results compared. The germline mtDNA sequence determined using DNA isolated from the patient's blood (control) was compared to the mutations present in cellular mtDNA recovered from patient's NAF.</p> <p>Results</p> <p>From the cohort of 28 women recruited for this study, NAF was successfully recovered from 23 participants (82%). Twenty two (96%) of the women produced fluids from both breasts. Twenty NAF samples and corresponding blood were chosen for this study. Except for one NAF sample, the whole mtgenome was successfully amplified using a single primer pair, or three pairs of overlapping primers. Comparison of MCv2 data from the two institutions demonstrates 99.200% concordance. Moreover, MCv2 data was 99.999% identical to CE sequencing, indicating that MCv2 is a reliable method to rapidly sequence the entire mtgenome. Four NAF samples contained somatic mutations.</p> <p>Conclusion</p> <p>We have demonstrated that NAF is a suitable material for mtDNA sequence analysis using the rapid and reliable MCv2. Somatic mtDNA mutations present in NAF of women with benign breast diseases could potentially be used as risk factors for progression to breast cancer, but this will require a much larger study with clinical follow up.</p

    Asiatic Acid Inhibits Pro-Angiogenic Effects of VEGF and Human Gliomas in Endothelial Cell Culture Models

    Get PDF
    Malignant gliomas are one of the most devastating and incurable tumors. Sustained excessive angiogenesis by glioma cells is the major reason for their uncontrolled growth and resistance toward conventional therapies resulting in high mortality. Therefore, targeting angiogenesis should be a logical strategy to prevent or control glioma cell growth. Earlier studies have shown that Asiatic Acid (AsA), a pentacyclic triterpenoid, is effective against glioma and other cancer cells; however, its efficacy against angiogenesis remains unknown. In the present study, we examined the anti-angiogenic efficacy of AsA using human umbilical vein endothelial cells (HUVEC) and human brain microvascular endothelial cells (HBMEC). Our results showed that AsA (5–20 µM) inhibits HUVEC growth and induces apoptotic cell death by activating caspases (3 and 9) and modulating the expression of apoptosis regulators Bad, survivin and pAkt-ser473. Further, AsA showed a dose-dependent inhibition of HUVEC migration, invasion and capillary tube formation, and disintegrated preformed capillary network. AsA also inhibited the VEGF-stimulated growth and capillary tube formation by HUVEC and HBMEC. Next, we analyzed the angiogenic potential of conditioned media collected from human glioma LN18 and U87-MG cells treated with either DMSO (control conditioned media, CCM) or AsA 20 µM (AsA20 conditioned media, AsA20CM). CCM from glioma cells significantly enhanced the capillary tube formation in both HUVEC and HBMEC, while capillary tube formation in both endothelial cell lines was greatly compromised in the presence of AsA20CM. Consistent with these results, VEGF expression was lesser in AsA20CM compared to CCM, and indeed AsA strongly inhibited VEGF level (both cellular and secreted) in glioma cells. AsA also showed dose-dependent anti-angiogenic efficacy in Matrigel plug assay, and inhibited the glioma cells potential to attract HUVEC/HBMEC. Overall, the present study clearly showed the strong anti-angiogenic potential of AsA and suggests its usefulness against malignant gliomas

    Elucidating the role of metal ions in carbonic anhydrase catalysis

    Get PDF
    Why metalloenzymes often show dramatic changes in their catalytic activity when subjected to chemically similar but non-native metal substitutions is a long-standing puzzle. Here, we report on the catalytic roles of metal ions in a model metalloenzyme system, human carbonic anhydrase II (CA II). Through a comparative study on the intermediate states of the zinc-bound native CA II and non-native metal-substituted CA IIs, we demonstrate that the characteristic metal ion coordination geometries (tetrahedral for Zn2+, tetrahedral to octahedral conversion for Co2+, octahedral for Ni2+, and trigonal bipyramidal for Cu2+) directly modulate the catalytic efficacy. In addition, we reveal that the metal ions have a long-range (~10 ??) electrostatic effect on restructuring water network in the active site. Our study provides evidence that the metal ions in metalloenzymes have a crucial impact on the catalytic mechanism beyond their primary chemical properties. ?? 2020, The Author(s)
    corecore