155 research outputs found

    Performance Trade-offs in Layouts For Relief Centers

    Get PDF
    At a disaster affected region, relief centers distribute critical supplies and aid to the affected victims. Unlike traditional distribution centers, relief centers experience significant ‘crowd effects’ due to the sudden influx of victims in a confined space. Using knowledge from studies on pedestrian traffic flow, specialized state dependent queuing models are developed to model the flow of victims along the walkways setup at a relief center. The underlying queuing network model is analyzed to derive expressions for the average times that victims experience before they receive the service at the relief center. The research shows that crowd density effects lead to significant increase in congestion and queuing delays underscoring the importance of developing specialized queuing models that assess the impact of congestion effects on alternative layouts of relief centers

    Enhanced photoelectrochemical response of 1D TiO₂ by atmospheric pressure plasma surface modification

    Get PDF
    In this paper we demonstrate the use of atmospheric pressure plasma jet (APPJ) to functionalize the surface of hydrothermally synthesized vertically aligned TiO2 nanorods (TNRs) for photo electrochemical (PEC) application. The TNRs functionalized with the atmospheric pressure He-plasma showed relatively higher crystallinity, improved light absorption, and change in the morphology with additional surface area, leading to an enhanced photocurrent density than that of the untreated. Achieving the PEC performance on par with the best in the literature, this APPJ treatment is shown to be a promising technique to obtain better functionality with TNR kind of materials and many other nano-micro systems for various applications such as PEC hydrogen generation

    ANALYTICAL METHOD DEVELOPMENT AND VALIDATION FOR DIPYRIDAMOLE

    Get PDF
    A sensitive, specific, precise and cost effective High Performance Liquid Chromatographic method of analysis for dipyridamole in presence of its degradation products is developed and validated. The method employed Targa C8 column i.e., (250 X 4.6 mm 5 μm particle size) column as stationary phase. The mobile phase consists of acetonitrile and pH3.0 buffer in the ratio of 35:65 %. It is pumped through the chromatographic system at a flow rate of 1.2 ml/min. The UV detector is operated at 282 nm. This system was found to give good resolution between dipyridamole and its degradation products. Method was validated as per ICH guideline

    PREPARATION, SOLID STATE CHARACTERISATION OF PACLITAXEL AND NARINGEN COCRYSTALS WITH IMPROVED SOLUBILITY

    Get PDF
    Objective: The objective of the present study is to prepare a better form of paclitaxel cocrystal with improved solubility. Paclitaxel (PTX) is a class-4 drug; this drug has low aqueous solubility and high affinity for P-gp. Available formulation are IV based and using our research work with advantages of co-crystal technology towards the enhancement of paclitaxel solubility and thereby its bioavailability (1) and also to improve the patient compliance. Methods: Naringen was selected based on their chemical nature and its ability to inhibit P-gp, solvent assisted grinding method used to prepare the cocrystals, and prepared cocrystals were subjected to solid state characterization to determine the crystal structure of the cocrystals, as this can provide significant new insights into how the drug and coformer interact, and thereby provide an excellent crystal engineering guide to new cocrystals, potentially with improved properties. Instruments like Fourier transform infrared spectroscopy(FTIR), differential scanning calorimetry, X-ray powder diffraction will be used to determine their stability and any phase transformations (including decomposition) which they might undergo as a function of temperature. Results: Principle involved in the formation of cocrystal is hydrogen bonding between C=O and N-H group of drug and COOH groups of coformers, which is confirmed by FTIR data and DSC experiments were carried out to study the melting point and heat of enthalpy of the cocrystals. Results clearly shows that the melting point of the cocrystals was increased which confirms the formation of cocrystals. The drug and formation of cocrystals are explained by the X-ray powder diffraction patterns. The PXRD patterns of the pure drug showed sharp, well-defined peaks(spectrum attached) and cocrystals PXRD patterns shows that there is a significant difference in the entire diffraction pattern, changes in peak locations with respect to pure drug indicates a change in the arrangement of molecules, hence confirms the development of new crystalline phase. Conclusion: The results obtained from the above experiments clearly shows the formation of cocrystals with improved solubility

    Organ-specific adaptive signaling pathway activation in metastatic breast cancer cells

    Get PDF
    Breast cancer metastasizes to bone, visceral organs, and/or brain depending on the subtype, which may involve activation of a host organ-specific signaling network in metastatic cells. To test this possibility, we determined gene expression patterns in MDA-MB-231 cells and its mammary fat pad tumor (TMD-231), lung-metastasis (LMD-231), bone-metastasis (BMD-231), adrenal-metastasis (ADMD-231) and brain-metastasis (231-BR) variants. When gene expression between metastases was compared, 231-BR cells showed the highest gene expression difference followed by ADMD-231, LMD-231, and BMD-231 cells. Neuronal transmembrane proteins SLITRK2, TMEM47, and LYPD1 were specifically overexpressed in 231-BR cells. Pathway-analyses revealed activation of signaling networks that would enable cancer cells to adapt to organs of metastasis such as drug detoxification/oxidative stress response/semaphorin neuronal pathway in 231-BR, Notch/orphan nuclear receptor signals involved in steroidogenesis in ADMD-231, acute phase response in LMD-231, and cytokine/hematopoietic stem cell signaling in BMD-231 cells. Only NF-κB signaling pathway activation was common to all except BMD-231 cells. We confirmed NF-κB activation in 231-BR and in a brain metastatic variant of 4T1 cells (4T1-BR). Dimethylaminoparthenolide inhibited NF-κB activity, LYPD1 expression, and proliferation of 231-BR and 4T1-BR cells. Thus, transcriptome change enabling adaptation to host organs is likely one of the mechanisms associated with organ-specific metastasis and could potentially be targeted therapeutically

    Current status of viral diseases affecting black pepper and cardamom

    Get PDF
    Black pepper and cardamom are the important spice crops grown in India and other countries. Viruses are one of the major yield limiting factors in both these spice crops. Viral diseases spread at a faster rate in these spices, as they are vegetatively propagated. Lack of sensitive detection methods has led to the widespread distribution of viral diseases in all black pepper and cardamom growing regions. The viruses infecting these two spice crops have now been identified; characterized and sensitive diagnostics have been developed. Integration of various approaches like use of resistant varieties, virus-free planting materials, vector control and cultural methods are required for the management of viral diseases. Rejuvenation of viral disease affected black pepper plantations through proper soil and plant health management were proved to be successful. The present review deals with characterization, diagnosis and management of viral diseases affecting black pepper and cardamom

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio
    corecore