80 research outputs found

    Pilot Preference, Compliance, and Performance With an Airborne Conflict Management Toolset

    Get PDF
    A human-in-the-loop experiment was conducted at the NASA Ames and Langley Research Centers, investigating the En Route Free Maneuvering component of a future air traffic management concept termed Distributed Air/Ground Traffic Management (DAG-TM). NASA Langley test subject pilots used the Autonomous Operations Planner (AOP) airborne toolset to detect and resolve traffic conflicts, interacting with subject pilots and air traffic controllers at NASA Ames. Experimental results are presented, focusing on conflict resolution maneuver choices, AOP resolution guidance acceptability, and performance metrics. Based on these results, suggestions are made to further improve the AOP interface and functionality

    Fast-Time Evaluations of Airborne Merging and Spacing in Terminal Arrival Operations

    Get PDF
    NASA researchers are developing new airborne technologies and procedures to increase runway throughput at capacity-constrained airports by improving the precision of inter-arrival spacing at the runway threshold. In this new operational concept, pilots of equipped aircraft are cleared to adjust aircraft speed to achieve a designated spacing interval at the runway threshold, relative to a designated lead aircraft. A new airborne toolset, prototypes of which are being developed at the NASA Langley Research Center, assists pilots in achieving this objective. The current prototype allows precision spacing operations to commence even when the aircraft and its lead are not yet in-trail, but are on merging arrival routes to the runway. A series of fast-time evaluations of the new toolset were conducted at the Langley Research Center during the summer of 2004. The study assessed toolset performance in a mixed fleet of aircraft on three merging arrival streams under a range of operating conditions. The results of the study indicate that the prototype possesses a high degree of robustness to moderate variations in operating conditions

    Effect of food deprivation and hormones of glucose homeostasis on the acetyl CoA carboxylase activity in mouse brain: a potential role of acc in the regulation of energy balance

    Get PDF
    We studied the regulation of brain acetyl CoA carboxylase (ACC) activity during food deprivation and under the influence of hormones of glucose homeostasis: glucagon and insulin. Mice were deprived of food and water for time periods of 1, 3, 6, 9, 12 and 24 hours and were then allowed to re-feed for 5, 30 and 60 minutes. Mice that were deprived for up to 6 h, and then re-fed for 60 min, consumed the same amount of food compared to the ad libitum (control) animals. However, after 9 h of deprivation, mice consumed only 50% of food present even after 1 h of re-feeding, compared to the controls. The ACC activity was measured in the whole mouse brain of controls and after 1, 3, 6, 9, 12, and 24 h of food deprivation. Brain extracts assayed from control mice expressed an ACC activity of 0.988 ± 0.158 fmol/min/mg tissue without citrate and 0.941 ± 0.175 fmol/min/mg tissue with citrate. After 1 h of food deprivation, the total ACC activity without citrate decreased to 0.575 ± 0.087 fmol/min/mg and in the presence of citrate, 0.703 ± 0.036 fmol/min/mg activity was measured. The citrate-dependent ACC activity decreased over time, with only 0.478 ± 0.117 fmol/min/mg of activity remaining after 24 h. Intraperitoneal (i.p.) injections of insulin, glucagon and phosphate buffered saline (PBS) were performed and whole brain ACC activity measured. After hormone administration, there were no significant differences in ACC activity in the presence of citrate. However, in the absence of citrate, there was a significant 20% decrease in ACC activity with glucagon (1.36 ± 0.09 fmol/min/mg) and a 33% increase with insulin (2.49 ± 0.11 fmol/min/mg) injections compared to PBS controls (1.67 ± 0.08 fmol/min/mg). Neuropeptide Y (NPY) levels of corresponding brain extracts were measured by ELISA (OD) using anti-NPY antibody and showed an 18% decrease upon insulin injection (0.093 ± 0.019) and a 50% increase upon glucagon injection (0.226 ± 0.084) as compared to controls injected with PBS (0.114 ± 0.040). Thus, we postulate that the changes in ACC levels under metabolic conditions would result in a fluctuation of malonyl CoA levels, and subsequent modulation of NPY levels and downstream signaling

    Association of Micronutrients and Prevalence of Antibodies in Hyperthyroidism

    Get PDF
    Thyroid hormones play a pivotal role in the overall physiological and developmental function of the human body. Alterations in thyroid hormones drastically affect regular metabolic processes as well as physical well-being. Thyroid alterations directly influence the functioning of all major body systems including cardiovascular, neurological, gastrointestinal, etc. The thyroid hormonal imbalance is primarily classified into two major conditions: hyperthyroidism and hypothyroidism. The present chapter details the pathology of thyroid imbalance in the context of human reproductive health, autoimmunity, and micronutrient imbalance. Some novel micronutrient associations independent of iodine deficiencies are discussed. Additionally, the early predictive capability of the anti-TPO antibody as well as other autoimmune correlations are discussed. Given its role in reproductive health, the associations of various sex hormones with thyroid function were also explored

    Autonomous aircraft operations using RTCA guidelines for airborne conflict management

    Get PDF
    Abstract A human-in-the-loop experiment was performed at the NASA Langley Research Center to study the feasibility of DAG-TM autonomous aircraft operations in highly constrained airspace. The airspace was constrained by a pair of special-use airspace (SUA) regions on either side of the pilot's planned route. Traffic flow management (TFM) constraints were imposed as a required time of arrival and crossing altitude at an en route fix. Key guidelines from the RTCA Airborne Conflict Management (ACM) concept were applied to autonomous aircraft operations for this experiment. These concepts included the RTCA ACM definitions of distinct conflict detection and collision avoidance zones, and the use of a graded system of conflict alerts for the flight crew. Three studies were conducted in the course of the experiment. The first study investigated the effect of hazard proximity upon pilot ability to meet constraints and solve conflict situations. The second study investigated pilot use of the airborne tools when faced with an unexpected loss of separation (LOS). The third study explored pilot interactions in an over-constrained conflict situation, with and without priority rules dictating who should move first. Detailed results from these studies were presented at the 5 th USA/Europe Air Traffic Management R&D Seminar (ATM2003). This overview paper focuses on the integration of the RTCA ACM concept into autonomous aircraft operations in highly constrained situations, and provides an overview of the results presented at the ATM2003 seminar. These results, together with previously reported studies, continue to support the feasibility of autonomous aircraft operations

    A mouse model with widespread expression of the C9orf72-linked glycine-arginine dipeptide displays non-lethal ALS/FTD-like phenotypes

    Get PDF
    Translation of the hexanucleotide G4C2 expansion associated with C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) produces five different dipeptide repeat protein (DPR) species that can confer toxicity. There is yet much to learn about the contribution of a single DPR to disease pathogenesis. We show here that a short repeat length is sufficient for the DPR poly-GR to confer neurotoxicity in vitro, a phenomenon previously unobserved. This toxicity is also reported in vivo in our novel knock-in mouse model characterized by widespread central nervous system (CNS) expression of the short-length poly-GR. We observe sex-specific chronic ALS/FTD-like phenotypes in these mice, including mild motor neuron loss, but no TDP-43 mis-localization, as well as motor and cognitive impairments. We suggest that this model can serve as the foundation for phenotypic exacerbation through second-hit forms of stress

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    Background: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. Methods: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. Findings: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96–1·28). Interpretation: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. Funding: National Institute for Health Research Health Services and Delivery Research Programme

    Effectiveness of a national quality improvement programme to improve survival after emergency abdominal surgery (EPOCH): a stepped-wedge cluster-randomised trial

    Get PDF
    BACKGROUND: Emergency abdominal surgery is associated with poor patient outcomes. We studied the effectiveness of a national quality improvement (QI) programme to implement a care pathway to improve survival for these patients. METHODS: We did a stepped-wedge cluster-randomised trial of patients aged 40 years or older undergoing emergency open major abdominal surgery. Eligible UK National Health Service (NHS) hospitals (those that had an emergency general surgical service, a substantial volume of emergency abdominal surgery cases, and contributed data to the National Emergency Laparotomy Audit) were organised into 15 geographical clusters and commenced the QI programme in a random order, based on a computer-generated random sequence, over an 85-week period with one geographical cluster commencing the intervention every 5 weeks from the second to the 16th time period. Patients were masked to the study group, but it was not possible to mask hospital staff or investigators. The primary outcome measure was mortality within 90 days of surgery. Analyses were done on an intention-to-treat basis. This study is registered with the ISRCTN registry, number ISRCTN80682973. FINDINGS: Treatment took place between March 3, 2014, and Oct 19, 2015. 22 754 patients were assessed for elegibility. Of 15 873 eligible patients from 93 NHS hospitals, primary outcome data were analysed for 8482 patients in the usual care group and 7374 in the QI group. Eight patients in the usual care group and nine patients in the QI group were not included in the analysis because of missing primary outcome data. The primary outcome of 90-day mortality occurred in 1210 (16%) patients in the QI group compared with 1393 (16%) patients in the usual care group (HR 1·11, 0·96-1·28). INTERPRETATION: No survival benefit was observed from this QI programme to implement a care pathway for patients undergoing emergency abdominal surgery. Future QI programmes should ensure that teams have both the time and resources needed to improve patient care. FUNDING: National Institute for Health Research Health Services and Delivery Research Programme
    • …
    corecore