152 research outputs found

    Using Boulder Tracks as a Tool to Understand the Bearing Capacity of Permanently Shadowed Regions of the Moon

    Get PDF
    Permanently shadowed regions (PSRs) are abundant at the lunar poles. They experience no direct sunlight and reach temperatures as low as 30 K. PSRs are of interest as evidence suggests that some may contain water ice (H2O/OH‐), which could provide a record of the evolution of volatiles in the inner solar system. This water ice is also a critical resource for life‐support systems and rocket propellant. A better understanding of mechanical properties of PSR regolith, such as its bearing capacity, will help optimize the design of future exploration rovers and landers. Thirteen boulder tracks were identified on the edge of, or inside, south polar lunar PSR enhanced imagery and used to estimate the strength of the PSR regolith at latitudes of 70° to 76° in sites with maximum annual temperatures of 65 to 210 K. PSR boulder track features are similar to those observed in highland, mare, and pyroclastic regions of the Moon, implying similar properties of the regolith. Measured features were used to estimate bearing capacity for PSR regolith at depths of ~0.28 to 4.68 m. Estimated bearing capacity values suggest that these PSRs may be somewhat stronger than highland and mare regions at depths of 0.28 to 1.00 m. Bearing capacity in these PSRs is statistically the same as those in other regions of the Moon at depths of 1.00 to 2.00 m. The results of this study can be used to infer bearing capacity as one measure for the trafficability of lower‐latitude PSRs of the type measured here

    Visual ecology of aphids – a critical review on the role of colours in host finding

    Get PDF
    We review the rich literature on behavioural responses of aphids (Hemiptera: Aphididae) to stimuli of different colours. Only in one species there are adequate physiological data on spectral sensitivity to explain behaviour crisply in mechanistic terms. Because of the great interest in aphid responses to coloured targets from an evolutionary, ecological and applied perspective, there is a substantial need to expand these studies to more species of aphids, and to quantify spectral properties of stimuli rigorously. We show that aphid responses to colours, at least for some species, are likely based on a specific colour opponency mechanism, with positive input from the green domain of the spectrum and negative input from the blue and/or UV region. We further demonstrate that the usual yellow preference of aphids encountered in field experiments is not a true colour preference but involves additional brightness effects. We discuss the implications for agriculture and sensory ecology, with special respect to the recent debate on autumn leaf colouration. We illustrate that recent evolutionary theories concerning aphid–tree interactions imply far-reaching assumptions on aphid responses to colours that are not likely to hold. Finally we also discuss the implications for developing and optimising strategies of aphid control and monitoring

    Human-assisted Sample Return Mission at the Schrödinger Basin, Lunar Far Side, Using a New Geologic Map and Rover Traverses

    Get PDF
    The Schrödinger basin on the south polar lunar far side has been highlighted as a promising target for future exploration. This report provides a high-resolution geologic map in the southwest peak-ring (SWPR) area of the Schrödinger basin, emphasizing structural features and detailed mapping of exposed outcrops within the peak ring. Outcrops are correlated with mineralogical data from the Moon Mineralogical Mapper instrument. Geologic mapping reveals a complex structural history within the basin through a system of radially oriented faults. Further, the geologic map shows both faulted and magmatic contacts between peak-ring mineralogies, providing both structural and magmatic context for understanding lunar crustal evolution and polar region processes. To investigate these relationships and address key scientific concepts and goals from the National Research Council (NRC) report, we propose three traverse paths for a robotic sample return mission in the SWPR area. These traverses focus on addressing the highest priority science concepts and goals by investigating known outcrops with diverse mineralogical associations and visible contacts among them. Coinciding with the preparation for the 2024 Artemis III mission, NASA is increasing the priority of robotic exploration at the lunar south pole before the next crewed mission to the Moon. Through mapping the Schrödinger SWPR, we identified the extent of different lunar crustal mineralogies, inferred their geologic relationships and distribution, and pinpointed traversable routes to sample spectrally diverse outcrops and outcrop-derived boulders. The SWPR region is therefore a promising potential target for future exploration, capable of addressing multiple high-priority lunar science goals

    Evidence of Carboniferous arc magmatism preserved in the Chicxulub impact structure

    Get PDF
    Determining the nature and age of the 200-km-wide Chicxulub impact target rock is an essential step in advancing our understanding of the Maya Block basement. Few age constraints exist for the northern Maya Block crust, specifically the basement underlying the 66 Ma, 200 km-wide Chicxulub impact structure. The International Ocean Discovery Program-International Continental Scientific Drilling Program Expedition 364 core recovered a continuous section of basement rocks from the Chicxulub target rocks, which provides a unique opportunity to illuminate the pre-impact tectonic evolution of a terrane key to the development of the Gulf of Mexico. Sparse published ages for the Maya Block point to Mesoproterozoic, Ediacaran, Ordovician to Devonian crust are consistent with plate reconstruction models. In contrast, granitic basement recovered from the Chicxulub peak ring during Expedition 364 yielded new zircon U-Pb laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) concordant dates clustering around 334 ± 2.3 Ma. Zircon rare earth element (REE) chemistry is consistent with the granitoids having formed in a continental arc setting. Inherited zircon grains fall into three groups: 400–435 Ma, 500–635 Ma, and 940–1400 Ma, which are consistent with the incorporation of Peri-Gondwanan, Pan-African, and Grenvillian crust, respectively. Carboniferous U-Pb ages, trace element compositions, and inherited zircon grains indicate a pre-collisional continental volcanic arc located along the Maya Block's northern margin before NW Gondwana collided with Laurentia. The existence of a continental arc along NW Gondwana suggests southward-directed subduction of Rheic oceanic crust beneath the Maya Block and is similar to evidence for a continental arc along the northern margin of Gondwana that is documented in the Suwannee terrane, Florida, USA, and Coahuila Block of NE México

    Properties and distribution of paired candidate stony meteorites at Meridiani Planum, Mars

    Get PDF
    The Mars Exploration Rover Opportunity investigated four rocks, informally dubbed Barberton, Santa Catarina, Santorini, and Kasos, that are possible stony meteorites. Their chemical and mineralogical composition is similar to the howardite, eucrite, and diogenite group but with additional metal, similar to mesosiderite silicate clasts. Because of their virtually identical composition and because they appear to represent a relatively rare group of meteorites, they are probably paired. The four rocks were investigated serendipitously several kilometers apart, suggesting that Opportunity is driving across a larger population of similar rock fragments, maybe a meteorite strewn field. Small amounts of ferric Fe are a result of weathering. We did not observe evidence for fusion crusts. Four iron meteorites were found across the same area. Although mesosiderites are stony irons, a genetic link to these irons is unlikely. The stony meteorites probably fell later than the irons. The current atmosphere is sufficiently dense to land such meteorites at shallow entry angles, and it would disperse fragments over several kilometers upon atmospheric breakup. Alternatively, dispersion by spallation from an impacting meteoroid may have occurred. Santa Catarina and a large accumulation of similar rocks were found at the rim of Victoria crater. It is possible that they are associated with the impactor that created Victoria crater, but our limited knowledge about their distribution cannot exclude mere coincidence
    corecore