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Introduction:  Permanently Shadowed Regions 

(PSRs) are areas that do not experience direct sunlight 

and are commonly found in the polar regions of the 

Moon. PSRs can reach temperatures as low as 30 K 

and are of interest because there is direct and indirect 

evidence to suggest the presence of water (H2O/OH-) 

inside most PSRs [1,2].  
Several missions to explore PSRs have been pro-

posed, but little is known about the strength of regolith 

near potential landing sites. Hints about regolith poros-

ity have been extracted: The LCROSS impactor into a 

lunar PSR resulted in ejecta angles and flashes ex-

pected in highly porous material of ~70 % to equiva-

lent depths of 2-3 m [3]; LRO DIVINER low thermal 

inertia values suggest the upper few centimeters of 

high-latitude regions of the Moon are highly porous 

[4]; and laboratory studies suggest material experienc-

ing low thermal cycling, such as that in PSRs, will be 

more porous [5]. If such high porosity soils truly exist, 

they may not be able to sustain loads as well as that in 

areas already explored on the Moon, requiring signifi-

cant changes to landing pad and rover wheel designs. 

To test those findings, we analyze boulder tracks to 

determine the bearing capacity of lunar soils in lunar 

south polar PSRs.  Those results are then used to eval-

uate the trafficability of these regions. 

Lunar boulder tracks: Rockfalls and their associ-

ated boulder tracks are abundant on the Moon [6,7]. 

The dimensions of tracks with respect to associated 

boulders can be used to infer soil strength using bear-

ing capacity theory. This work uses a variation of Han-

sen’s formula [8]: 

 

qf=cNcscdcicbcgc+qoNqsqdqiqbqgq+0.5γBHNγsγdγiγbγgγ (1)  

 

where c is the cohesion of the soil, q0 is the vertical 

stress within the soil, γ is the unit weight of the soil, B 

is the width of footing, N(c,q,γ) are the bearing capacity 

factors, d(c,q,γ) are the depth factors, s(c,q,γ) are the shape 

factors, g(c,q,γ) are the local slope inclination factors, 

and i(c,q,γ) and  b(c,q,g) are the load and foundation incli-

nation factors, respectively.  Hansen’s formula consid-

ers slope angles and rectangular shaped boulders. This 

was deemed suitable for application to the generally 

non-spherical boulders found on the Moon and their 

boulder tracks which are generally formed on crater 

walls and slopes [8]. 

Methods: Representative PSRs were selected from 

a recent map of PSRs [9]. Narrow Angle Camera 

(NAC) images of those areas were stretched by enhanc-

ing contrast and brightness to identify boulder tracks in 

shadowed areas. Only areas with secondary sunlight, 

diffusely reflected from crater walls into PSRs, were 

used in this initial study as a minimum amount of illu-

mination was required to identify boulders.  

Images were processed with two customized spatial 

filters to remove excess noise that was amplified during 

NAC contrast and brightness adaptation (Fig. 1). Boul-

der and track dimensions, and the associated shadows 

produced, were recorded for each of 13 boulder tracks 

identified in 5 PSRs. The illumination angle of the sec-

ondary light was estimated by determining the mid-

point of the illuminated slope and its height above the 

boulder and its track. The illumination angle could then 

be used with track measurements to estimate the track 

depth. 

 

 
 

Fig. 1 Pre- and post- image stretching and filtering. A 

boulder track can be seen entering a shadowed region.  

 

All measurements and soil properties from the liter-

ature were then input into Hansen’s formula (1) to es-

timate the bearing capacity. All results were compared 

with values obtained in previous work from this team 

[8] for highland, mare, and pyroclastic regions on the 

Moon.  
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Results: The analysis indicates boulder tracks 

formed in PSRs have qualitatively similar morpholo-

gies to those formed in highland, mare, and pyroclastic 

regions (Fig. 2). 

 

 
 

Fig. 2 Left – boulder track in Aristarchus (highland 

slope). Right - boulder track near Schrödinger (PSR 

slope). 

 

Calculated bearing capacities increase with depth for 

all terrains, although PSR and pyroclastic regolith is 

generally stronger than highland and mare regolith at 

equivalent depths (Fig. 3). 

 

 
Fig. 3 Bearing capacity as a function of depth for all 

location types on all slopes. 

 

Calculated bearing capacities and interpolation of 

PSR data also indicate steeper slopes cannot support 

boulders as well as flatter slopes (Fig. 4), a result of the 

reduced soil volume bearing the boulder [10]. PSRs are 

significantly stronger than mare regions in the upper 

0.28 to 1 m of regolith and at slopes of 0°, with esti-

mated bearing capacities of 123±18 kNm-2 and 93±23 

kNm-2, respectively. PSRs are statistically similar to 

pyroclastic deposits which have calculated bearing 

capacities of 131±21 kNm-2 [8].  There was insufficient 

data in the upper 1 m of highland regolith for a statisti-

cal comparison. 

 

 
Fig. 4 Bearing capacity as a function of slope for a 

range of boulder track depths for PSRs. 

 

It should be noted that this technique is limited by 

the minimum depth of measured boulder tracks (≳28 

cm in PSRs). The minimum track depth measured is 

constrained by the minimum track shadow length 

measured, which in turn is constrained by the resolu-

tion of the available NAC imagery (~0.5 m/pixel).  

Discussion and Conclusions: This boulder track 

study suggests that regolith in PSRs is significantly 

stronger than mare regolith at depths ≳28 cm, poten-

tially contradicting reports of very high porosity in 

PSRs [3,4,5] or restricting those proposed high porosi-

ty conditions to the uppermost 28 cm.  In either case, 

trafficability of PSRs may be possible with wheel di-

ameters ≳56 cm. In situ analyses are still required to 

verify these results and to establish the strength of the 

uppermost 28 cm of regolith. 
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