78 research outputs found

    Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR

    Get PDF
    New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100x larger than during its dormant state. The X-ray flux one month after reactivation was at least 800x larger than during quiescence, and has been decaying exponentially on a 111+/-19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.Comment: Published in ApJ (2018 April 5); 13 pages, 4 figure

    Strong-coupling expansion and effective hamiltonians

    Full text link
    When looking for analytical approaches to treat frustrated quantum magnets, it is often very useful to start from a limit where the ground state is highly degenerate. This chapter discusses several ways of deriving {effective Hamiltonians} around such limits, starting from standard {degenerate perturbation theory} and proceeding to modern approaches more appropriate for the derivation of high-order effective Hamiltonians, such as the perturbative continuous unitary transformations or contractor renormalization. In the course of this exposition, a number of examples taken from the recent literature are discussed, including frustrated ladders and other dimer-based Heisenberg models in a field, as well as the mapping between frustrated Ising models in a transverse field and quantum dimer models.Comment: To appear as a chapter in "Highly Frustrated Magnetism", Eds. C. Lacroix, P. Mendels, F. Mil

    Therapeutic recreation as a developing profession in South Africa

    Get PDF
    South Africa experiences socio-economic challenges with a high prevalence of poverty resulting in disability and non-communicable diseases affecting the health and welfare of communities. Health services are not always accessible or available to citizens, especially those of previously disadvantaged or rural communities. The South African National Plan for Development 2030 aims to address these inequality and health issues. One focus area of this plan is the inclusion of recreation, leisure and sport as an important service sector to improve the health and well-being of all individuals. Therapeutic recreation could play an important role in this regard. In South Africa, therapeutic recreation is in its developmental stages. This paper aims to provide the reader with an overview of therapeutic recreation in South Africa as a developing profession. An overview of the current status of the profession is discussed in terms of standard of practice and as it relates to health professions and recreation service providers, programmes with therapeutic value and training needs. The study concludes that there is still groundwork to be done, calling for interested parties to embark on an aggressive advocacy and strategic planning process to develop therapeutic recreation as a profession in South Africa.Scopu

    Electrochemistry of nanozeolite-immobilized cytochrome c in aqueous and nonaqueous solutions

    Get PDF
    peer-reviewedThe electrochemical properties of cytochrome c (cyt c) immobilized on multilayer nanozeolite-modified electrodes have been examined in aqueous and nonaqueous solutions. Layers of Linde type-L zeolites were assembled on indium tin oxide (ITO) glass electrodes followed by the adsorption of cyt c, primarily via electrostatic interactions, onto modified ITO electrodes. The heme protein displayed a quasi-reversible response in aqueous solution with a redox potential of +324 mV (vs NHE), and the surface coverage (Gamma*) increased linearly for the first four layers and then gave a nearly constant value of 200 pmol cm(-2). On immersion of the modified electrodes in 95% (v/v) nonaqueous solutions, the redox potential decreased significantly, a decrease that originated from changes in both the enthalpy and entropy of reduction. On reimmersion of the modified electrode in buffer, the faradic response immediately returned to its original value. These results demonstrate that nanozeolites are potential stable supports for redox proteins and enzymes.ACCEPTEDpeer-reviewe

    Modulation of the silica sol-gel composition for the promotion of direct electron transfer to encapsulated cytochrome

    Get PDF
    The direct electron transfer between indium-tin oxide electrodes (ITO) and cytochrome c encapsulated in different sol-gel silica networks was studied. Cyt c@silica modified electrodes were synthesized by a two-step encapsulation method mixing a phosphate buffer solution with dissolved cytochrome c and a silica sol prepared by the alcohol-free sol-gel route. These modified electrodes were characterized by cyclic voltammetry, UV-vis spectroscopy, and in situ UV-vis spectroelectrochemistry. The electrochemical response of encapsulated protein is influenced by the terminal groups of the silica pores. Cyt c does not present electrochemical response in conventional silica (hydroxyl terminated) or phenyl terminated silica. Direct electron transfer to encapsulated cytochrome c and ITO electrodes only takes place when the protein is encapsulated in methyl modified silica networks.We gratefully acknowledge Jesus Yanez and Prof. Jose Miguel Martin-Martinez from the Laboratory of Adhesion and Adhesives (University of Alicante) for their assistance in the measurements of contact angle. We also acknowledge the Financial support from the Spanish Ministerio de Economia y Competitividad and FEDER y Ciencia (MAT2010-15273), Generalitat Valenciana (PROMETEO2013/038), and the Fundacion Ramon Areces (CIVP16A1821). Alonso Gamero-Quijano is grateful to Generalitat Valenciana (Santiago Grisolia Program) for the funding of his research fellowship.Gamero-Quijano, A.; Huerta, F.; Morallón, E.; Montilla, F. (2014). Modulation of the silica sol-gel composition for the promotion of direct electron transfer to encapsulated cytochrome. Langmuir. 30(34):10531-10538. https://doi.org/10.1021/la5023517S1053110538303

    Recent advances in understanding hypertension development in sub-Saharan Africa

    Get PDF
    Consistent reports indicate that hypertension is a particularly common finding in black populations. Hypertension occurs at younger ages and is often more severe in terms of blood pressure levels and organ damage than in whites, resulting in a higher incidence of cardiovascular disease and mortality. This review provides an outline of recent advances in the pathophysiological understanding of blood pressure elevation and the consequences thereof in black populations in Africa. This is set against the backdrop of populations undergoing demanding and rapid demographic transition, where infection with the Human Immunodeficiency Virus predominates, and where under and over-nutrition coexist. Collectively, recent findings from Africa illustrate an increased lifetime risk to hypertension from foetal life onwards. From young ages black populations display early endothelial dysfunction, increased vascular tone and reactivity, microvascular structural adaptions, as well as increased aortic stiffness resulting in elevated central and brachial blood pressures during the day and night, when compared to whites. Together with knowledge on the contributions of sympathetic activation and abnormal renal sodium handling, these pathophysiological adaptations result in subclinical and clinical organ damage at younger ages. This overall enhanced understanding on the determinants of blood pressure elevation in blacks encourages (a) novel approaches to assess and manage hypertension in Africa better, (b) further scientific discovery to develop more effective prevention and treatment strategies, and (c) policymakers and health advocates to collectively contribute in creating health-promoting environments in Africa

    Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast

    Get PDF
    The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation

    Distinct serum biosignatures are associated with different tuberculosis treatment outcomes.

    Get PDF
    Biomarkers for TB treatment response and outcome are needed. This study characterize changes in immune profiles during TB treatment, define biosignatures associated with treatment outcomes, and explore the feasibility of predictive models for relapse. Seventy-two markers were measured by multiplex cytokine array in serum samples from 78 cured, 12 relapsed and 15 failed treatment patients from South Africa before and during therapy for pulmonary TB. Promising biosignatures were evaluated in a second cohort from Uganda/Brazil consisting of 17 relapse and 23 cured patients. Thirty markers changed significantly with different response patterns during TB treatment in cured patients. The serum biosignature distinguished cured from relapse patients and a combination of two clinical (time to positivity in liquid culture and BMI) and four immunological parameters (TNF-?, sIL-6R, IL-12p40 and IP-10) at diagnosis predicted relapse with a 75% sensitivity (95%CI 0.38-1) and 85% specificity (95%CI 0.75-0.93). This biosignature was validated in an independent Uganda/Brazil cohort correctly classifying relapse patients with 83% (95%CI 0.58-1) sensitivity and 61% (95%CI 0.39-0.83) specificity. A characteristic biosignature with value as predictor of TB relapse was identified. The repeatability and robustness of these biomarkers require further validation in well-characterized cohorts

    The 1.28 GHz MeerKAT DEEP2 Image

    Get PDF
    We present the confusion-limited 1.28 GHz MeerKAT DEEP2 image covering one qb » ¢ 68 FWHM primarybeam area with θ = 7 6 FWHM resolution and s = m - n 0.55 0.01 Jy beam 1 rms noise. Its J2000 center position α = 04h 13m 26 4, δ = −80° 00′ 00″ was selected to minimize artifacts caused by bright sources. We introduce the new 64-element MeerKAT array and describe commissioning observations to measure the primary-beam attenuation pattern, estimate telescope pointing errors, and pinpoint (u, v) coordinate errors caused by offsets in frequency or time. We constructed a 1.4 GHz differential source count by combining a power-law count fit to the DEEP2 confusion P(D) distribution from 0.25 to 10 μJy with counts of individual DEEP2 sources between 10 μJy and 2.5 mJy. Most sources fainter than S ∼ 100 μJy are distant star-forming galaxies (SFGs) obeying the far-IR/ radio correlation, and sources stronger than 0.25 μJy account for ∼93% of the radio background produced by SFGs. For the first time, the DEEP2 source count has reached the depth needed to reveal the majority of the star formation history of the universe. A pure luminosity evolution of the 1.4 GHz local luminosity function consistent with the Madau & Dickinson model for the evolution of SFGs based on UV and infrared data underpredicts our 1.4 GHz source count in the range -5 log Jy 4 [ ( )] S
    • …
    corecore